Shifts in Estimated Preferred Directions During Simulated BMI Experiments With No Adaptation.
Ontology highlight
ABSTRACT: Experiments with brain-machine interfaces (BMIs) reveal that the estimated preferred direction (EPD) of cortical motor units may shift following the transition to brain control. However, the cause of those shifts, and in particular, whether they imply neural adaptation, is an open issue. Here we address this question in simulations and theoretical analysis. Simulations are based on the assumption that the brain implements optimal state estimation and feedback control and that cortical motor neurons encode the estimated state and control vector. Our simulations successfully reproduce apparent shifts in EPDs observed in BMI experiments with different BMI filters, including linear, Kalman and re-calibrated Kalman filters, even with no neural adaptation. Theoretical analysis identifies the conditions for reducing those shifts. We demonstrate that simulations that better satisfy those conditions result in smaller shifts in EPDs. We conclude that the observed shifts in EPDs may result from experimental conditions, and in particular correlated velocities or tuning weights, even with no adaptation. Under the above assumptions, we show that if neurons are tuned differently to the estimated velocity, estimated position and control signal, the EPD with respect to actual velocity may not capture the real PD in which the neuron encodes the estimated velocity. Our investigation provides theoretical and simulation tools for better understanding shifts in EPD and BMI experiments.
Project description:Use of blue-enriched light has received increasing interest regarding its activating and performance sustaining effects. However, studies assessing effects of such light during night work are few, and novel strategies for lighting using light emitting diode (LED) technology need to be researched. In a counterbalanced crossover design, we investigated the effects of a standard polychromatic blue-enriched white light (7000 K; ∼200 lx) compared to a warm white light (2500 K), of similar photon density (∼1.6 × 1014 photons/cm2/s), during three consecutive simulated night shifts. A total of 30 healthy participants [10 males, mean age 23.3 (SD = 2.9) years] were included in the study. Dependent variables comprised subjective alertness using the Karolinska Sleepiness Scale, a psychomotor vigilance task (PVT) and a digit symbol substitution test (DSST), all administered at five time points throughout each night shift. We also assessed dim-light melatonin onset (DLMO) before and after the night shifts, as well as participants' opinion of the light conditions. Subjective alertness and performance on the PVT and DSST deteriorated during the night shifts, but 7000 K light was more beneficial for performance, mainly in terms of fewer errors on the PVT, at the end of the first- and second- night shift, compared to 2500 K light. Blue-enriched light only had a minor impact on PVT response times (RTs), as only the fastest 10% of the RTs were significantly improved in 7000 K compared to 2500 K light. In both 7000 and 2500 K light, the DLMO was delayed in those participants with valid assessment of this parameter [n = 20 (69.0%) in 7000 K light, n = 22 (78.6%) in 2500 K light], with a mean of 2:34 (SE = 0:14) and 2:12 (SE = 0:14) hours, respectively, which was not significantly different between the light conditions. Both light conditions were positively rated, although participants found 7000 K to be more suitable for work yet evaluated 2500 K light as more pleasant. The data indicate minor, but beneficial, effects of 7000 K light compared to 2500 K light on performance during night work. Circadian adaptation did not differ significantly between light conditions, though caution should be taken when interpreting these findings due to missing data. Field studies are needed to investigate similar light interventions in real-life settings, to develop recommendations regarding illumination for night workers. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03203538.
Project description:In freshwater ecosystems, dynamic hydraulic events (floods or dam maintenance) lead to sediment resuspension and mixing with waters of different composition. Microbial communities living in the sediments play a major role in these leaching events, contributing to organic matter degradation and the release of trace elements. However, the dynamics of community diversity are seldom studied in the context of ecological studies. Therefore, we carried out laboratory-induced leaching experiments, using sediments from the Villerest dam reservoir (Villerest, France). To assess whole microbial community diversity, we sequenced the archaeal and bacterial 16S rRNA genes using Illumina MiSeq. Our results suggest that the degree of dissolved oxygen found in the water during these resuspension episodes influenced community dynamics, with anoxic waters leading to drastic shifts in sedimentary communities compared to oxic waters. Furthermore, the release of microbial cells from sediments to the water column were more favorable to water colonization when events were caused by oxic waters. Most of the bacteria found in the sediments were chemoorganotrophs and most of the archaea were methanogens. Methylotrophic, as well as archaeal, and bacterial chemoorganotrophs were detected in the leachate samples. These results also show that organic matter degradation occurred, likely participating in carbonate dissolution and the release of trace elements during freshwater resuspension events.
Project description:Misalignment of the daily sleep-wake and fasting-feeding cycles with the endogenous circadian timing system is an inevitable consequence of night shift work and is associated with adverse metabolic health effects. However, a detailed characterisation of the effects of night shifts on 24-h rhythms in the metabolome is missing. We performed targeted metabolomic profiling on plasma samples collected every 2 h from healthy human subjects during two 24-h measurement periods at baseline and on the fourth day of a simulated night shift protocol, in which the habitual sleep-wake cycle was delayed by 10 h. Thirty-two out of the 130 detected metabolites showed a 24-h rhythm both at baseline and during the night shift condition. Among these, 75% were driven by sleep-wake and fasting-feeding cycles rather than by the endogenous circadian clock, showing an average phase delay of 8.8 h during the night shift condition. Hence, the majority of rhythmic metabolites were misaligned relative to the endogenous circadian system during the night shift condition. This could be a key mechanism involved in the increased prevalence of adverse metabolic health effects observed in shift workers. On the individual level, the response to the night shift protocol was highly diverse, with phase shifts of rhythmic metabolite profiles ranging from a 0.2-h advance in one subject to a 12-h delay in another subject, revealing an individual metabolomic signature of circadian misalignment. Our findings provide insight into the overall and individual responses of the metabolome to circadian misalignment associated with night schedules and may thereby contribute to the development of individually tailored strategies to minimise the metabolic impacts of shift work.
Project description:Neuronal responses to ongoing stimulation in many systems change over time, or "adapt." Despite the ubiquity of adaptation, its effects on the stimulus information carried by neurons are often unknown. Here we examine how adaptation affects sensory coding in barrel cortex. We used spike-triggered covariance analysis of single-neuron responses to continuous, rapidly varying vibrissa motion stimuli, recorded in anesthetized rats. Changes in stimulus statistics induced spike rate adaptation over hundreds of milliseconds. Vibrissa motion encoding changed with adaptation as follows. In every neuron that showed rate adaptation, the input-output tuning function scaled with the changes in stimulus distribution, allowing the neurons to maintain the quantity of information conveyed about stimulus features. A single neuron that did not show rate adaptation also lacked input-output rescaling and did not maintain information across changes in stimulus statistics. Therefore, in barrel cortex, rate adaptation occurs on a slow timescale relative to the features driving spikes and is associated with gain rescaling matched to the stimulus distribution. Our results suggest that adaptation enhances tactile representations in primary somatosensory cortex, where they could directly influence perceptual decisions.
Project description:The most widely used method for detecting genome-wide protein-DNA interactions is chromatin immunoprecipitation on tiling microarrays, commonly known as ChIP-chip. Here, we conducted the first objective analysis of tiling array platforms, amplification procedures, and signal detection algorithms in a simulated ChIP-chip experiment. Mixtures of human genomic DNA and "spike-ins" comprised of nearly 100 human sequences at various concentrations were hybridized to four tiling array platforms by eight independent groups. Blind to the number of spike-ins, their locations, and the range of concentrations, each group made predictions of the spike-in locations. We found that microarray platform choice is not the primary determinant of overall performance. In fact, variation in performance between labs, protocols and algorithms within the same array platform was greater than the variation in performance between array platforms. However, each array platform had unique performance characteristics that varied with tiling resolution and the number of replicates, which have implications for cost versus detection power. Long oligonucleotide arrays were slightly more sensitive at detecting very low enrichment. On all platforms, simple sequence repeats and genome redundancy tended to result in false positives. LM-PCR and WGA, the most popular sample amplification techniques, reproduced relative enrichment levels with high fidelity. Performance among signal detection algorithms was heavily dependent on array platform. The spike-in DNA samples and the data presented here provide a stable benchmark against which future ChIP platforms, protocol improvements, and analysis methods can be evaluated. Keywords: ChIP-chip For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:The most widely-used method for detecting and measuring genome-wide protein-DNA interactions is chromatin immunoprecipitation on tiling microarrays, commonly known as ChIP-chip. Many tiling array platforms, amplification methods, and analysis algorithms exist for ChIP-chip, but a rigorous assessment of the relative performance of these factors has not been reported. In a multi-lab simulation of a ChIP-chip experiment, we conducted the first objective analysis of tiling array platforms and analysis algorithms. We designed a complex mixture of human genomic DNA with a "spike-in" comprised of nearly 100 human sequences at various concentrations. Eight independent groups hybridized these mixtures to four different tiling array platforms. The groups were blind to the composition of the spike-in mix, the range of concentrations covered, or how many sequences it contained. Still blind to the key, each group made predictions of the spike-in locations based on their measurements. The results reveal that all commercial tiling array platforms perform well, although each platform and analysis algorithm has distinct performance characteristics. Simple sequence repeats and genome redundancy tend to result in false positives on oligonucleotide platforms. We also compare genome-wide platforms with regard to performance and cost. The spike-in DNA samples and the resulting array data presented in our study provide a stable benchmark against which future ChIP platforms, protocol improvements, and analysis methods can be evaluated. Keywords: Spike in Control For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:Substantial evidence in support of the formation of opioid receptor (OR) di-/oligomers suggests previously unknown mechanisms used by these proteins to exert their biological functions. In an attempt to guide experimental assessment of the identity of the minimal signaling unit for ORs, we conducted extensive coarse-grained (CG) molecular dynamics (MD) simulations of different combinations of the three major OR subtypes, i.e., ?-OR, ?-OR, and ?-OR, in an explicit lipid bilayer. Specifically, we ran multiple, independent MD simulations of each homomeric ?-OR/?-OR, ?-OR/?-OR, and ?-OR/?-OR complex, as well as two of the most studied heteromeric complexes, i.e., ?-OR/?-OR and ?-OR/?-OR, to derive the preferred supramolecular organization and dimer interfaces of ORs in a cell membrane model. These simulations yielded over 250 microseconds of accumulated data, which correspond to approximately 1 millisecond of effective simulated dynamics according to established scaling factors of the CG model we employed. Analysis of these data indicates similar preferred supramolecular organization and dimer interfaces of ORs across the different receptor subtypes, but also important differences in the kinetics of receptor association at specific dimer interfaces. We also investigated the kinetic properties of interfacial lipids, and explored their possible role in modulating the rate of receptor association and in promoting the formation of filiform aggregates, thus supporting a distinctive role of the membrane in OR oligomerization and, possibly, signaling.
Project description:Long-term space missions have shown an increased incidence of oral disease in astronauts' and as a result, are one of the top conditions predicted to impact future missions. Here we set out to evaluate the adaptive response of Streptococcus mutans (etiological agent of dental caries) to simulated microgravity. This organism has been well studied on earth and treatment strategies are more predictable. Despite this, we are unsure how the bacterium will respond to the environmental stressors in space. We used experimental evolution for 100-days in high aspect ratio vessels followed by whole genome resequencing to evaluate this adaptive response. Our data shows that planktonic S. mutans did evolve variants in three genes (pknB, SMU_399 and SMU_1307c) that can be uniquely attributed to simulated microgravity populations. In addition, collection of data at multiple time points showed mutations in three additional genes (SMU_399, ptsH and rex) that were detected earlier in simulated microgravity populations than in the normal gravity controls, many of which are consistent with other studies. Comparison of virulence-related phenotypes between biological replicates from simulated microgravity and control orientation cultures generally showed few changes in antibiotic susceptibility, while acid tolerance and adhesion varied significantly between biological replicates and decreased as compared to the ancestral populations. Most importantly, our data shows the importance of a parallel normal gravity control, sequencing at multiple time points and the use of biological replicates for appropriate analysis of adaptation in simulated microgravity.
Project description:After loss of central vision following retinal pathologies such as macular degeneration (MD), patients often adopt compensatory strategies including developing a "preferred retinal locus" (PRL) to replace the fovea in tasks involving fixation. A key question is whether patients develop multi-purpose PRLs or whether their oculomotor strategies adapt to the demands of the task. While most MD patients develop a PRL, clinical evidence suggests that patients may develop multiple PRLs and switch between them according to the task at hand. To understand this, we examined a model of central vision loss in normally seeing individuals and tested whether they used the same or different PRLs across tasks after training. Nineteen participants trained for 10 sessions on contrast detection while in conditions of gaze-contingent, simulated central vision loss. Before and after training, peripheral looking strategies were evaluated during tasks measuring visual acuity, reading abilities and visual search. To quantify strategies in these disparate, naturalistic tasks, we measured and compared the amount of task-relevant information at each of 8 equally spaced, peripheral locations, while participants performed the tasks. Results showed that some participants used consistent viewing strategies across tasks whereas other participants' strategies differed depending on task. This novel method allows quantification of peripheral vision use even in relatively ecological tasks. These results represent one of the first examinations of peripheral viewing strategies across tasks in simulated vision loss. Results suggest that individual differences in peripheral looking strategies following simulated central vision loss may model those developed in pathological vision loss.
Project description:The most widely used method for detecting genome-wide protein-DNA interactions is chromatin immunoprecipitation on tiling microarrays, commonly known as ChIP-chip. Here, we conducted the first objective analysis of tiling array platforms, amplification procedures, and signal detection algorithms in a simulated ChIP-chip experiment. Mixtures of human genomic DNA and "spike-ins" comprised of nearly 100 human sequences at various concentrations were hybridized to four tiling array platforms by eight independent groups. Blind to the number of spike-ins, their locations, and the range of concentrations, each group made predictions of the spike-in locations. We found that microarray platform choice is not the primary determinant of overall performance. In fact, variation in performance between labs, protocols and algorithms within the same array platform was greater than the variation in performance between array platforms. However, each array platform had unique performance characteristics that varied with tiling resolution and the number of replicates, which have implications for cost versus detection power. Long oligonucleotide arrays were slightly more sensitive at detecting very low enrichment. On all platforms, simple sequence repeats and genome redundancy tended to result in false positives. LM-PCR and WGA, the most popular sample amplification techniques, reproduced relative enrichment levels with high fidelity. Performance among signal detection algorithms was heavily dependent on array platform. The spike-in DNA samples and the data presented here provide a stable benchmark against which future ChIP platforms, protocol improvements, and analysis methods can be evaluated. Keywords: ChIP-chip For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf