Unknown

Dataset Information

0

Microglial MERTK eliminates phosphatidylserine-displaying inhibitory post-synapses.


ABSTRACT: Glia contribute to synapse elimination through phagocytosis in the central nervous system. Despite the important roles of this process in development and neurological disorders, the identity and regulation of the "eat-me" signal that initiates glia-mediated phagocytosis of synapses has remained incompletely understood. Here, we generated conditional knockout mice with neuronal-specific deletion of the flippase chaperone Cdc50a, to induce stable exposure of phosphatidylserine, a well-known "eat-me" signal for apoptotic cells, on the neuronal outer membrane. Surprisingly, acute Cdc50a deletion in mature neurons causes preferential phosphatidylserine exposure in neuronal somas and specific loss of inhibitory post-synapses without effects on other synapses, resulting in abnormal excitability and seizures. Ablation of microglia or the deletion of microglial phagocytic receptor Mertk prevents the loss of inhibitory post-synapses and the seizure phenotype, indicating that microglial phagocytosis is responsible for inhibitory post-synapse elimination. Moreover, we found that phosphatidylserine is used for microglia-mediated pruning of inhibitory post-synapses in normal brains, suggesting that phosphatidylserine serves as a general "eat-me" signal for inhibitory post-synapse elimination.

SUBMITTER: Park J 

PROVIDER: S-EPMC8327958 | biostudies-literature | 2021 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Microglial MERTK eliminates phosphatidylserine-displaying inhibitory post-synapses.

Park Jungjoo J   Choi Yeeun Y   Jung Eunji E   Lee Seung-Hee SH   Sohn Jong-Woo JW   Chung Won-Suk WS  

The EMBO journal 20210519 15


Glia contribute to synapse elimination through phagocytosis in the central nervous system. Despite the important roles of this process in development and neurological disorders, the identity and regulation of the "eat-me" signal that initiates glia-mediated phagocytosis of synapses has remained incompletely understood. Here, we generated conditional knockout mice with neuronal-specific deletion of the flippase chaperone Cdc50a, to induce stable exposure of phosphatidylserine, a well-known "eat-m  ...[more]

Similar Datasets

| S-EPMC4109015 | biostudies-literature
| S-EPMC10960525 | biostudies-literature
| S-EPMC7022215 | biostudies-literature
| S-EPMC10760041 | biostudies-literature
| S-EPMC11304498 | biostudies-literature
| S-EPMC2970556 | biostudies-literature
| S-EPMC3387162 | biostudies-literature
| S-EPMC7429740 | biostudies-literature
| S-EPMC4658206 | biostudies-literature
| S-EPMC10921710 | biostudies-literature