Project description:Fungi are mediators of the nitrogen and carbon cycles in terrestrial ecosystems. Examining how nitrogen uptake and organic matter decomposition potential differs in fungi can provide insight into the underlying mechanisms driving fungal ecological processes and ecosystem functioning. In this study, we assessed the frequency of genes encoding for specific enzymes that facilitate nitrogen uptake and organic matter decomposition in 879 fungal genomes with fungal taxa grouped into trait-based categories. Our linked gene-trait data approach revealed that gene frequencies vary across and within trait-based groups and that trait-based categories differ in trait space. We present two examples of how this linked gene-trait approach can be used to address ecological questions. First, we show that this type of approach can help us better understand, and potentially predict, how fungi will respond to environmental stress. Specifically, we found that trait-based categories with high nitrogen uptake gene frequency increased in relative abundance when exposed to high soil nitrogen enrichment. Second, by comparing frequencies of nitrogen uptake and organic matter decomposition genes, we found that most ectomycorrhizal fungi in our dataset have similar gene frequencies to brown rot fungi. This demonstrates that gene-trait data approaches can shed light on potential evolutionary trajectories of life history traits in fungi. We present a framework for exploring nitrogen uptake and organic matter decomposition gene frequencies in fungal trait-based groups and provide two concise examples on how to use our framework to address ecological questions from a mechanistic perspective.
Project description:Zoosporic fungi of the phylum Chytridiomycota (chytrids) regularly dominate pelagic fungal communities in freshwater and marine environments. Their lifestyles range from obligate parasites to saprophytes. Yet, linking the scarce available sequence data to specific ecological traits or their host ranges constitutes currently a major challenge. We combined 28 S rRNA gene amplicon sequencing with targeted isolation and sequencing approaches, along with cross-infection assays and analysis of chytrid infection prevalence to obtain new insights into chytrid diversity, ecology, and seasonal dynamics in a temperate lake. Parasitic phytoplankton-chytrid and saprotrophic pollen-chytrid interactions made up the majority of zoosporic fungal reads. We explicitly demonstrate the recurrent dominance of parasitic chytrids during frequent diatom blooms and saprotrophic chytrids during pollen rains. Distinct temporal dynamics of diatom-specific parasitic clades suggest mechanisms of coexistence based on niche differentiation and competitive strategies. The molecular and ecological information on chytrids generated in this study will aid further exploration of their spatial and temporal distribution patterns worldwide. To fully exploit the power of environmental sequencing for studies on chytrid ecology and evolution, we emphasize the need to intensify current isolation efforts of chytrids and integrate taxonomic and autecological data into long-term studies and experiments.
Project description:Primary and secondary metabolites exuded by plant roots have mainly been studied under laboratory conditions, while knowledge of root exudate patterns of plants growing in natural communities is very limited. Focusing on ten common European grassland plant species, we asked to which degree exuded metabolite compositions are specific to species or growth forms (forbs and grasses), depend on environments and local neighbourhoods, and reflect traditional plant functional traits. Root exudates were collected under field conditions and analysed using a non-targeted gas chromatography coupled mass spectrometry (GC-MS) approach. In total, we annotated 153 compounds of which 36 were identified by structure and name as metabolites mainly derived from the primary metabolism. Here we show by using variance partitioning, that the composition of exuded polar metabolites was mostly explained by plot identity, followed by plant species identity while plant species composition of the local neighbourhood played no role. Total and root dry biomass explained the largest proportion of variance in exudate composition, with additional variance explained by traditional plant traits. Although the exudate composition was quite similar between the two growth forms, we found some metabolites that occurred only in one of the two growth forms. Our study demonstrated the feasibility of measuring polar exudates under non-sterile field conditions by mass spectrometry, which opens new avenues of research for functional plant ecology.
Project description:Colonization of terrestrial environments by filamentous fungi relies on their ability to form networks that can forage for and connect resource patches. Despite the importance of these networks, ecologists rarely consider network features as functional traits because their measurement and interpretation are conceptually and methodologically difficult. To address these challenges, we have developed a pipeline to translate images of fungal mycelia, from both micro- and macro-scales, to weighted network graphs that capture ecologically relevant fungal behaviour. We focus on four properties that we hypothesize determine how fungi forage for resources, specifically: connectivity; relative construction cost; transport efficiency; and robustness against attack by fungivores. Constrained ordination and Pareto front analysis of these traits revealed that foraging strategies can be distinguished predominantly along a gradient of connectivity for micro- and macro-scale mycelial networks that is reminiscent of the qualitative 'phalanx' and 'guerilla' descriptors previously proposed in the literature. At one extreme are species with many inter-connections that increase the paths for multidirectional transport and robustness to damage, but with a high construction cost; at the other extreme are species with an opposite phenotype. Thus, we propose this approach represents a significant advance in quantifying ecological strategies for fungi using network information.
Project description:Genebanks are responsible for collecting, maintaining, characterizing, documenting, and distributing plant genetic resources for research, education, and breeding purposes. The rationale for requests of plant materials varies highly from areas of anthropology, social science, small-holder farmers, the commercial sector, rehabilitation of degraded systems, all the way to crop improvement and basic research. Matching "the right" accessions to a particular request is not always a straightforward process especially when genetic resource collections are large and the user does not already know which accession or even which species they want to study. Some requestors have limited knowledge of the crop; therefore, they do not know where to begin and thus, initiate the search by consultation with crop curators to help direct their request to the most suitable germplasm. One way to enhance the use of genebank material and aid in the selection of genetic resources is to have thoroughly cataloged agronomic, biochemical, genomic, and other traits linked to genebank accessions. In general, traits of importance to most users include genotypes that thrive under various biotic and abiotic stresses, morphological traits (color, shape, size of fruits), plant architecture, disease resistance, nutrient content, yield, and crop specific quality traits. In this review, we discuss methods for linking traits to genebank accessions, examples of linked traits, and some of the complexities involved, while reinforcing why it is critical to have well characterized accessions with clear trait data publicly available.
Project description:There is growing recognition that co-morbidity and co-occurrence of disease traits are often determined by shared genetic and molecular mechanisms. In most cases, however, the specific mechanisms that lead to such trait-trait relationships are yet unknown. Here we present an analysis of a broad spectrum of behavioral and physiological traits together with gene-expression measurements across genetically diverse mouse strains. We develop an unbiased methodology that constructs potentially overlapping groups of traits and resolves their underlying combination of genetic loci and molecular mechanisms. For example, our method predicts that genetic variation in the Klf7 gene may influence gene transcripts in bone marrow-derived myeloid cells, which in turn affect 17 behavioral traits following morphine injection; this predicted effect of Klf7 is consistent with an in vitro perturbation of Klf7 in bone marrow cells. Our analysis demonstrates the utility of studying hidden causative mechanisms that lead to relationships between complex traits.
Project description:Ecologists rely on various functional traits when investigating the functioning of ecological systems and its responses to global changes. Changing nutrient levels, for example, can affect taxa expressing different trait combinations in various ways, e.g., favoring small, fast-growing species under high phosphorus conditions. Stoichiometric traits, describing the elemental composition of organism body tissues, can help in understanding the mechanisms behind such functional shifts. So far, mainly life-history traits have been related to body stoichiometry (e.g., the growth rate hypothesis) on a limited number of taxa, and there is little knowledge of the general link between stoichiometric and other functional traits on a taxonomically large scale. Here, we highlight this link in the freshwater macroinvertebrates, testing predictions from underlying trait-based and Ecological Stoichiometry Theory (EST) in >200 taxa belonging to eight larger taxonomic groups. We applied a series of multivariate analyses on six of their stoichiometric traits (%C, %N, %P, C:N, C:P, and N:P) and 23 biological and ecological traits. We found significant relationships between stoichiometric traits and other types of traits when analyzing single-trait and multi-trait profiles. Patterns found within traits related to organism development or nutrient cycling were in line with our assumptions based on EST, e.g., traits describing predators were associated with high %N; traits suggesting a fast development (small maximum body size and high molting frequency) with high %P. Associations between ecological traits and body stoichiometry could be explained by the longitudinal stream gradient: Taxa preferring headwater habitats (i.e., high altitude, coarse substrate, and cold temperature) exhibited high %N and %P. Demonstrating the link between stoichiometric and both bio- and ecological traits on a large diversity of taxa underlines the potential of integrating stoichiometric traits into ecological analyses to improve our understanding of taxonomic and functional responses of communities-and ecosystems-to changing environmental conditions worldwide.
Project description:Enzymes can be post-translationally modified, leading to isoforms with different properties. The phenotypic consequences of the quantitative variability of isoforms have never been studied. We used quantitative proteomics to dissect the relationships between the abundances of the enzymes and isoforms of alcoholic fermentation, metabolic traits, and growth-related traits in Saccharomyces cerevisiae. Although the enzymatic pool allocated to the fermentation proteome was constant over the culture media and the strains considered, there was variation in abundance of individual enzymes and sometimes much more of their isoforms, which suggests the existence of selective constraints on total protein abundance and trade-offs between isoforms. Variations in abundance of some isoforms were significantly associated to metabolic traits and growth-related traits. In particular, cell size and maximum population size were highly correlated to the degree of N-terminal acetylation of the alcohol dehydrogenase. The fermentation proteome was found to be shaped by human selection, through the differential targeting of a few isoforms for each food-processing origin of strains. These results highlight the importance of post-translational modifications in the diversity of metabolic and life-history traits.