Project description:The novel mRNA-based vaccines against SARS-CoV-2 display encouraging safety and efficacy profiles. However, there is a paucity of data regarding their immunogenicity and safety in patients with liver diseases (PWLD), especially in those with cirrhosis. We prospectively assessed anti-SARS-CoV-2 S-spike IgG antibodies and neutralizing activity in fully vaccinated PWLD (n = 87) and controls (n = 40). Seroconversion rates were 97.4% (37/38) in cirrhotic PWLD, 87.8% (43/49) in non-cirrhotic PWLD and 100% (40/40) in controls. Adequate neutralizing activity was detected in 92.1% (35/38), 87.8% (43/49) and 100% (40/40) of cirrhotics, non-cirrhotics and controls, respectively. On multivariable analysis, immunosuppressive treatment was negatively correlated with anti-SARS-CoV-2 antibody titers (coefficient (SE): -2.716 (0.634), p < 0.001) and neutralizing activity (coefficient (SE): -24.379 (4.582), p < 0.001), while age was negatively correlated only with neutralizing activity (coefficient (SE): -0.31(0.14), p = 0.028). A total of 52 responder PWLD were reassessed approximately 3 months post-vaccination and no differences were detected in humoral responses between cirrhotic and non-cirrhotic PWLD. No significant side effects were noted post vaccination, while no symptomatic breakthrough infections were reported during a 6-month follow up. Overall, our study shows that m-RNA-based SARS-CoV-2 vaccines are safe and efficacious in PWLD. However, PWLD under immunosuppressive treatment and those of advanced age should probably be more closely monitored after vaccination.
Project description:Despite extensive research on SARS-CoV-2 vaccination responses in healthy individuals, there is comparatively little known beyond antibody titers and T-cell responses in the vulnerable cohort of patients after allogeneic hematopoietic stem cell transplantation (ASCT). In this study, we assessed the serological response and performed longitudinal multimodal analyses including T cell functionality and single-cell RNA sequencing combined with TCR/BCR profiling in the context of BNT162b2 vaccination in ASCT patients. In addition, these data were compared to publicly available data sets of healthy vaccinees. Protective antibody titers were achieved in 40% of patients. We identified a distorted B and T cell distribution, a reduced TCR diversity, and increased levels of exhaustion marker expression as possible causes for the poorer vaccine response rates in ASCT patients. IGHV gene rearrangement after vaccination proved to be highly variable in ASCT patients. Changes in TCRα and TCRβ gene rearrangement after vaccination differed from patterns observed in healthy vaccinees as well as unvaccinated ASCT patients and associated transplant donors. Crucially, ASCT patients elicited comparable proportions of SARS-CoV-2 vaccine-induced (VI) CD8+ T cells, characterized by a distinct gene expression pattern that is associated with SARS-CoV-2 specificity in healthy individuals. Our study underlines the impaired immune system and thus the lower vaccine response rates in ASCT patients. However, since protective vaccine responses and VI-CD8+ T cells can be induced in part of ASCT patients, our data advocate early post-transplant vaccination due to the high risk of infection in this vulnerable group.
Project description:Many safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations dramatically reduce risks of coronavirus disease 2019 (COVID-19) complications and deaths. We aimed to describe cases of SARS-CoV-2 infection among patients with chronic liver disease (CLD) and liver transplant (LT) recipients with at least one prior COVID-19 vaccine dose. The SECURE-Liver and COVID-Hep international reporting registries were used to identify laboratory-confirmed COVID-19 in CLD and LT patients who received a COVID-19 vaccination. Of the 342 cases of lab-confirmed SARS-CoV-2 infections in the era after vaccine licensing, 40 patients (21 with CLD and 19 with LT) had at least one prior COVID-19 vaccination, including 12 who were fully vaccinated (≥2 weeks after second dose). Of the 21 patients with CLD (90% with cirrhosis), 7 (33%) were hospitalized, 1 (5%) was admitted to the intensive care unit (ICU), and 0 died. In the LT cohort (n = 19), there were 6 hospitalizations (32%), including 3 (16%) resulting in mechanical ventilation and 2 (11%) resulting in death. All three cases of severe COVID-19 occurred in patients who had a single vaccine dose within the last 1-2 weeks. In contemporary patients with CLD, rates of symptomatic infection, hospitalization, ICU admission, invasive ventilation, and death were numerically higher in unvaccinated individuals. Conclusion: This case series demonstrates the potential for COVID-19 infections among patients with CLD and LT recipients who had received the COVID-19 vaccination. Vaccination against SARS-CoV-2 appears to result in favorable outcomes as attested by the absence of mechanical ventilation, ICU, or death among fully vaccinated patients.
Project description:The development of COVID-19 vaccines has been a triumph of biomedical research. However, there are still challenges, including assessment of their immunogenicity in high-risk populations, including PLWH. In the present study, we enrolled 121 PLWH aged >18 years, that were vaccinated against COVID-19 in the Polish National Vaccination Program. Patients filled in questionnaires regarding the side effects of vaccination. Epidemiological, clinical, and laboratory data were collected. The efficacy of COVID-19 vaccines was evaluated with an ELISA that detects IgG antibodies using a recombinant S1 viral protein antigen. The interferon-gamma release assay (IGRA) was applied to quantitate interferon-gamma (IFN-γ) to assess cellular immunity to SARS-CoV-2. In total, 87 patients (71.9%) received mRNA vaccines (BNT162b2-76 (59.5%), mRNA-1273- 11 (9.1%)). A total of 34 patients (28.09%) were vaccinated with vector-based vaccines (ChAdOx Vaxzevria- 20 (16.52%), Ad26.COV2.S- 14 (11.6%)). A total of 95 (78.5%) of all vaccinated patients developed a protective level of IgG antibodies. Only eight PLWH (6.6%) did not develop cellular immune response. There were six patients (4.95%) that did not develop a cellular and humoral response. Analysis of variance proved that the best humoral and cellular response related to the administration of the mRNA-1273 vaccine. COVID-19 vaccines were found to be immunogenic and safe in PLWH. Vaccination with mRNA vaccines were related to better humoral and cellular responses.
Project description:Background/aimsIn this observational study, we explored the humoral and cellular immune response to SARS-CoV-2 vaccination in patients with autoimmune hepatitis (AIH) and patients with cholestatic autoimmune liver disease (primary sclerosing cholangitis [PSC] and primary biliary cholangitis [PBC]).MethodsAnti-SARS-CoV-2 antibody titers were determined using the DiaSorin LIAISON and Roche immunoassays in 103 AIH, 64 PSC, and 61 PBC patients and 95 healthy controls >14 days after the second COVID-19 vaccination. The spike-specific T-cell response was assessed using an activation-induced marker assay (AIM) in a subset of individuals.ResultsPrevious SARS-CoV-2 infection was frequently detected in AIH but not in PBC/PSC (10/112 (9%), versus 4/144 (2.7%), p = 0.03). In the remaining patients, seroconversion was measurable in 97% of AIH and 99% of PBC/PSC patients, respectively. However, in 13/94 AIH patients antibody levels were lower than in any healthy control, which contributed to lower antibody levels of the total AIH cohort when compared to PBC/PSC or controls (641 vs. 1020 vs. 1200 BAU/ml, respectively). Notably, antibody levels were comparably low in AIH patients with (n = 85) and without immunosuppression (n = 9). Also, antibody titers significantly declined within 7 months after the second vaccination. In the AIM assay of 20 AIH patients, a spike-specific T-cell response was undetectable in 45% despite a positive serology, while 87% (13/15) of the PBC/PSC demonstrated a spike-specific T-cell response.ConclusionPatients with AIH show an increased SARS-CoV-2 infection rate as well as an impaired B- and T-cell response to SARS-CoV-2 vaccine compared to PBC and PSC patients, even in the absence of immunosuppression. Thus, antibody responses to vaccination in AIH patients need to be monitored and early booster immunizations considered in low responders.
Project description:Background & aimsTwo SARS-CoV-2 mRNA vaccines were approved to prevent COVID-19 infection, with reported vaccine efficacy of 95%. Liver transplant (LT) recipients are at risk of lower vaccine immunogenicity and were not included in the registration trials. We assessed vaccine immunogenicity and safety in this special population.MethodsLT recipients followed at the Tel-Aviv Sourasky Medical Center and healthy volunteers were tested for SARS-CoV-2 IgG antibodies directed against the Spike-protein (S) and Nucleocapsid-protein (N) 10-20 days after receiving the second Pfizer-BioNTech BNT162b2 SARS-CoV-2 vaccine dose. Information regarding vaccine side effects and clinical data was collected from patients and medical records.ResultsEighty LT recipients were enrolled. Mean age was 60 years and 30% were female. Twenty-five healthy volunteer controls were younger (mean age 52.7 years, p = 0.013) and mostly female (68%, p = 0.002). All participants were negative for IgG N-protein serology, indicating immunity did not result from prior COVID-19 infection. All controls were positive for IgG S-protein serology. Immunogenicity among LT recipients was significantly lower with positive serology in only 47.5% (p <0.001). Antibody titer was also significantly lower in this group (mean 95.41 AU/ml vs. 200.5 AU/ml in controls, p <0.001). Predictors for negative response among LT recipients were older age, lower estimated glomerular filtration rate, and treatment with high dose steroids and mycophenolate mofetil. No serious adverse events were reported in either group.ConclusionLT recipients developed substantially lower immunological response to the Pfizer-BioNTech SARS-CoV-2 mRNA-based vaccine. Factors influencing serological antibody responses include age, renal function and immunosuppressive medications. The findings require re-evaluation of vaccine regimens in this population.Lay summaryThe Pfizer-BioNTech BNT162b2 SARS-CoV-2 vaccine elicited substantially inferior immunity in liver transplant recipients. Less than half of the patients developed sufficient levels of antibodies against the virus, and in those who were positive, average antibody levels were 2x less compared to healthy controls. Factors predicting non-response were older age, renal function and immunosuppressive medications.