Unknown

Dataset Information

0

Machine learning reveals mesenchymal breast carcinoma cell adaptation in response to matrix stiffness.


ABSTRACT: Epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition (MET), are believed to play key roles in facilitating the metastatic cascade. Metastatic lesions often exhibit a similar epithelial-like state to that of the primary tumour, in particular, by forming carcinoma cell clusters via E-cadherin-mediated junctional complexes. However, the factors enabling mesenchymal-like micrometastatic cells to resume growth and reacquire an epithelial phenotype in the target organ microenvironment remain elusive. In this study, we developed a workflow using image-based cell profiling and machine learning to examine morphological, contextual and molecular states of individual breast carcinoma cells (MDA-MB-231). MDA-MB-231 heterogeneous response to the host organ microenvironment was modelled by substrates with controllable stiffness varying from 0.2kPa (soft tissues) to 64kPa (bone tissues). We identified 3 distinct morphological cell types (morphs) varying from compact round-shaped to flattened irregular-shaped cells with lamellipodia, predominantly populating 2-kPa and >16kPa substrates, respectively. These observations were accompanied by significant changes in E-cadherin and vimentin expression. Furthermore, we demonstrate that the bone-mimicking substrate (64kPa) induced multicellular cluster formation accompanied by E-cadherin cell surface localisation. MDA-MB-231 cells responded to different substrate stiffness by morphological adaptation, changes in proliferation rate and cytoskeleton markers, and cluster formation on bone-mimicking substrate. Our results suggest that the stiffest microenvironment can induce MET.

SUBMITTER: Rozova VS 

PROVIDER: S-EPMC8336795 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3076070 | biostudies-literature
2013-01-01 | E-GEOD-29210 | biostudies-arrayexpress
| S-EPMC3073995 | biostudies-literature
| S-EPMC8791834 | biostudies-literature
| S-EPMC8306902 | biostudies-literature
| S-EPMC9119934 | biostudies-literature
| S-EPMC9592823 | biostudies-literature
| S-EPMC10871101 | biostudies-literature
2013-01-01 | GSE29210 | GEO