Project description:Although epidermal growth factor receptor (EGFR)-targeted therapy has improved clinical outcomes of patients with advanced non-small-cell lung cancer (NSCLC) carrying activating EGFR mutations, the development of acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs), including the promising third-generation ones, results in disease progression and has become an unavoidable problem that limits patient long-term benefit. The third-generation EGFR-TKIs, osimertinib and almonertinib, are now approved for the treatment of advanced NSCLC patients harboring activating EGFR mutations (first-line) and/or the resistant T790M mutation (second-line). Clinically, appropriate management of acquired resistance to third-generation EGFR-TKIs will substantially improve their long-term efficacy against EGFR-mutant NSCLC. Recent preclinical and clinical studies suggest that activation of the Ras/Raf/MEK/ERK signaling pathway may be an important resistance mechanism and accordingly co-targeting this pathway effectively overcomes and abrogates acquired resistance to third-generation EGFR-TKIs. This review focuses on discussing the scientific rationale for and potential of co-targeting MEK/ERK signaling in delaying and overcoming acquired resistance to third-generation EGFR-TKIs, particularly osimertinib.
Project description:The discovery that mutations in the EGFR gene are detected in up to 50% of lung adenocarcinoma patients, along with the development of highly efficacious epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), has revolutionized the treatment of this frequently occurring lung malignancy. Indeed, the clinical success of these TKIs constitutes a critical milestone in targeted cancer therapy. Three generations of EGFR-TKIs are currently approved for the treatment of EGFR mutation-positive non-small cell lung cancer (NSCLC). The first-generation TKIs include erlotinib, gefitinib, lapatinib, and icotinib; the second-generation ErbB family blockers include afatinib, neratinib, and dacomitinib; whereas osimertinib, approved by the FDA on 2015, is a third-generation TKI targeting EGFR harboring specific mutations. Compared with the first- and second-generation TKIs, third-generation EGFR inhibitors display a significant advantage in terms of patient survival. For example, the median overall survival in NSCLC patients receiving osimertinib reached 38.6 months. Unfortunately, however, like other targeted therapies, new EGFR mutations, as well as additional drug-resistance mechanisms emerge rapidly after treatment, posing formidable obstacles to cancer therapeutics aimed at surmounting this chemoresistance. In this review, we summarize the molecular mechanisms underlying resistance to third-generation EGFR inhibitors and the ongoing efforts to address and overcome this chemoresistance. We also discuss the current status of fourth-generation EGFR inhibitors, which are of great value in overcoming resistance to EGFR inhibitors that appear to have greater therapeutic benefits in the clinic.
Project description:BackgroundNon-small cell lung cancer (NSCLC) patients with activating EGFR mutations initially respond to first-generation EGFR inhibitors; however, the efficacy of these drugs is limited by acquired resistance driven by the EGFR T790M mutation. The discovery of third-generation EGFR inhibitors overcoming EGFR T790M and their new resistance mechanisms have attracted much attention.MethodsWe examined the antitumor activities and potential resistance mechanism of a novel EGFR third-generation inhibitor in vitro and in vivo using ELISA, SRB assay, immunoblotting, flow cytometric analysis, kinase array, qRT-PCR and tumor xenograft models. The clinical effect on a patient was evaluated by computed tomography scan.ResultsWe identified compound ASK120067 as a novel inhibitor of EGFR T790M, with selectivity over EGFR WT. ASK120067 exhibited potent anti-proliferation activity in tumor cells harboring EGFR T790M (NCI-H1975) and sensitizing mutations (PC-9 and HCC827) while showed moderate or weak inhibition in cells expressing EGFR WT. Oral administration of ASK120067 induced tumor regression in NSCLC xenograft models and in a PDX model harboring EGFR T790M. The treatment of one patient with advanced EGFR T790M-positive NSCLC was described as proof of principle. Moreover, we found that hyperphosphorylation of Ack1 and the subsequent activation of antiapoptotic signaling via the AKT pathway contributed to ASK120067 resistance. Concomitant targeting of EGFR and Ack1 effectively overrode the acquired resistance of ASK120067 both in vitro and in vivo.ConclusionsOur results idenfity ASK120067 as a promising third-generation EGFR inhibitor and reveal for the first time that Ack1 activation as a novel resistance mechanism to EGFR inhibitors that guide to potential combination strategy.
Project description:Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are currently recommended as first-line treatment for advanced non-small-cell lung cancer (NSCLC) with EGFR-activating mutations. Third-generation (3rd G) EGFR-TKIs, including osimertinib, offer an effective treatment option for patients with NSCLC resistant 1st and 2nd EGFR-TKIs. However, the efficacy of 3rd G EGFR-TKIs is limited by acquired resistance that has become a growing clinical challenge. Several clinical and preclinical studies are being carried out to better understand the mechanisms of resistance to 3rd G EGFR-TKIs and have revealed various genetic aberrations associated with molecular heterogeneity of cancer cells. Studies focusing on epigenetic events are limited despite several indications of their involvement in the development of resistance. Preclinical models, established in most cases in a similar manner, have shown different prevalence of resistance mechanisms from clinical samples. Clinically identified mechanisms include EGFR mutations that were not identified in preclinical models. Thus, NRAS genetic alterations were not observed in patients but have been described in cell lines resistant to 3rd G EGFR-TKI. Mainly, resistance to 3rd G EGFR-TKI in preclinical models is related to the activation of alternative signaling pathways through tyrosine kinase receptor (TKR) activation or to histological and phenotypic transformations. Yet, preclinical models have provided some insight into the complex network between dominant drivers and associated events that lead to the emergence of resistance and consequently have identified new therapeutic targets. This review provides an overview of preclinical studies developed to investigate the mechanisms of acquired resistance to 3rd G EGFR-TKIs, including osimertinib and rociletinib, across all lines of therapy. In fact, some of the models described were first generated to be resistant to first- and second-generation EGFR-TKIs and often carried the T790M mutation, while others had never been exposed to TKIs. The review further describes the therapeutic opportunities to overcome resistance, based on preclinical studies.
Project description:BackgroundGlioblastoma (GBM) is a fatal brain tumor, lacking effective treatment. Epidermal growth factor receptor (EGFR) is recognized as an attractive target for GBM treatment. However, GBMs have very poor responses to the first- and second-generation EGFR inhibitors. The third-generation EGFR-targeted drug, AZD9291, is a novel and irreversible inhibitor. It is noteworthy that AZD9291 shows excellent blood-brain barrier penetration and has potential for the treatment of brain tumors.MethodsIn this study, we evaluated the anti-tumor activity and effectiveness of AZD9291 in a preclinical GBM model.ResultsAZD9291 showed dose-responsive growth inhibitory activity against six GBM cell lines. Importantly, AZD9291 inhibited GBM cell proliferation > 10 times more efficiently than the first-generation EGFR inhibitors. AZD9291 induced GBM cell cycle arrest and significantly inhibited colony formation, migration, and invasion of GBM cells. In an orthotopic GBM model, AZD9291 treatment significantly inhibited tumor survival and prolonged animal survival. The underlying anti-GBM mechanism of AZD9291 was shown to be different from that of the first-generation EGFR inhibitors. In contrast to erlotinib, AZD9291 continuously and efficiently inhibited the EGFR/ERK signaling in GBM cells.ConclusionAZD9291 demonstrated an efficient preclinical activity in GBM in vitro and in vivo models. AZD9291 has been approved for the treatment of lung cancer with good safety and tolerability. Our results support the possibility of conducting clinical trials of anti-GBM therapy using AZD9291.
Project description:As a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), osimeritnib is the standard treatment for patients with non-small cell lung cancer harboring the EGFR T790M mutation; however, acquired resistance inevitably develops. Therefore, a next-generation treatment strategy is warranted in the osimertinib era. We investigated the mechanism of resistance to a novel EGFR-TKI, naquotinib, with the goal of developing a novel treatment strategy. We established multiple naquotinib-resistant cell lines or osimertinib-resistant cells, two of which were derived from EGFR-TKI-naïve cells; the others were derived from gefitinib- or afatinib-resistant cells harboring EGFR T790M. We comprehensively analyzed the RNA kinome sequence, but no universal gene alterations were detected in naquotinib-resistant cells. Neuroblastoma RAS viral oncogene homolog (NRAS) amplification was detected in naquotinib-resistant cells derived from gefitinib-resistant cells. The combination therapy of MEK inhibitors and naquotinib exhibited a highly beneficial effect in resistant cells with NRAS amplification, but the combination of MEK inhibitors and osimertinib had limited effects on naquotinib-resistant cells. Moreover, the combination of MEK inhibitors and naquotinib inhibited the growth of osimertinib-resistant cells, while the combination of MEK inhibitors and osimertinib had little effect on osimertinib-resistant cells. Clinical assessment of this novel combination (MEK inhibitors and naquotinib) is worth considering in osimertinib-resistant lung tumors.
Project description:BackgroundPatients with non-small cell lung cancer (NSCLC) harboring activating EGFR mutations are sensitive to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) but inevitably develop resistance to the inhibitors mostly through acquisition of the secondary T790M mutation. Although third-generation EGFR-TKIs overcome this resistance by selectively inhibiting EGFR with EGFR-TKI-sensitizing and T790M mutations, acquired resistance to third-generation EGFR-TKIs invariably develops.MethodsNext-generation sequencing (NGS) and fluorescence in situ hybridization (FISH) analysis were performed in an EGFR T790M-mutated NSCLC patient who had progressed after a third-generation EGFR-TKI, TAS-121. EGFR-mutated cell lines were subjected to a cell proliferation assay and western blotting analysis with EGFR-TKIs and a heat shock protein 90 (HSP90) inhibitor.ResultsNGS and FISH analysis revealed EGFR amplification in the resistant cancer cells. While EGFR L858R/T90M-mutated cell line was sensitive to osimertinib or TAS-121 in vitro, EGFR-overexpressing cell lines displayed resistance to these EGFR-TKIs. Western blot analysis showed that EGFR phosphorylation and overexpression of EGFR in cell lines was not suppressed by third-generation EGFR-TKIs. In contrast, an HSP90 inhibitor reduced total and phosphorylated EGFR and inhibited the proliferation of resistant cell lines.ConclusionsEGFR amplification confers resistance to third-generation EGFR-TKIs which can be overcome by HSP90 inhibition. The results provide a preclinical rationale for the use of HSP90 inhibitors to overcome EGFR amplification-mediated resistance.
Project description:Acquired T790 M mutation is the commonest cause of resistance for advanced non-small cell lung cancer (NSCLC) epidermal growth factor receptor (EGFR) mutant patients who had progressed after first line EGFR TKI (tyrosine kinase inhibitor). Several third generation EGFR TKIs which are EGFR mutant selective and wild-type (WT) sparing were developed to treat these patients with T790 M acquired resistant mutation. Osimertinib is one of the third generation EGFR TKIs and is currently the most advanced in clinical development. Unfortunately, despite good initial response, patients who was treated with third generation EGFR TKI would develop acquired resistance and several mechanisms had been identified and the commonest being C797S mutation at exon 20. Several novel treatment options were being developed for patients who had progressed on third generation EGFR TKI but they are still in the early phase of development. Osimertinib under FLAURA study had been shown to have better progression-free survival over first generation EGFR TKI in the first line setting and likely will become the new standard of care.