Project description:Unsupervised upper respiratory specimen collection is a key factor in the ability to massively scale SARS-CoV-2 testing. But there is concern that unsupervised specimen collection may produce inferior samples. Across two studies that included unsupervised at-home mid-turbinate specimen collection, ∼1% of participants used the wrong end of the swab. We found that molecular detection of respiratory pathogens and a human biomarker were comparable between specimens collected from the handle of the swab and those collected correctly. Older participants were more likely to use the swab backwards. Our results suggest that errors made during home-collection of nasal specimens do not preclude molecular detection of pathogens and specialized swabs may be an unnecessary luxury during a pandemic.
Project description:BackgroundSelf-sampling for SARS-CoV-2 would significantly raise testing capacity and reduce healthcare worker (HCW) exposure to infectious droplets personal, and protective equipment (PPE) use.MethodsWe conducted a diagnostic accuracy study where subjects with a confirmed diagnosis of COVID-19 (n = 401) and healthy volunteers (n = 100) were asked to self-swab from their oropharynx and mid-turbinate (OPMT), and self-collect saliva. The results of these samples were compared to an OPMT performed by a HCW in the same patient at the same session.ResultsIn subjects confirmed to have COVID-19, the sensitivities of the HCW-swab, self-swab, saliva, and combined self-swab plus saliva samples were 82.8%, 75.1%, 74.3% and 86.5% respectively. All samples obtained from healthy volunteers were tested negative. Compared to HCW-swab, the sensitivities of a self-swab sample and saliva sample were inferior by 8.7% (95%CI: 2.4% to 15.0%, p = 0.006) and 9.5% (95%CI: 3.1% to 15.8%, p = 0.003) respectively. The combined detection rate of self-swab and saliva had a sensitivity of 2.7% (95%CI: -2.6% to 8.0%, p = 0.321). The sensitivity of both the self-collection methods are higher when the Ct value of the HCW swab is less than 30. The specificity of both the self-swab and saliva testing was 100% (95% CI 96.4% to 100%).ConclusionOur study provides evidence that sensitivities of self-collected OPMT swab and saliva samples were inferior to a HCW swab, but they could still be useful testing tools in the appropriate clinical settings.
Project description:The Panbio COVID-19/Flu A&B Panel (Abbott) is an in vitro diagnostic rapid test designed for the qualitative detection of nucleocapsid proteins SARS-CoV-2 and nucleoprotein influenza A and B antigens in nasal mid-turbinate (NMT) swab specimens from symptomatic individuals meeting COVID-19 and influenza clinical and/or epidemiological criteria. This study, the largest global one to date using fresh samples, aimed to assess the diagnostic sensitivity and specificity of the Panbio COVID-19/Flu A&B Panel in freshly collected NMT swab specimens from individuals suspected of respiratory viral infection consistent with COVID-19 and/or influenza within the first 5 days of symptom onset compared with results obtained with the cobas SARS-CoV-2 and influenza A/B qualitative assay (cobas 6800/8800 systems), which were tested using nasopharyngeal swab samples. A total of 512 evaluable subjects were enrolled in the COVID-19 cohort across 18 sites, and 1,148 evaluable subjects were enrolled in the influenza cohort across 22 sites in the Asia-Pacific, Europe, and the USA. The Panbio COVID-19/Flu A&B Panel demonstrated a sensitivity of 80.4% and a specificity of 99.7% for COVID-19. For influenza A, the sensitivity and specificity rates were 80.6% and 99.3%, respectively. Likewise, for influenza B, the sensitivity and specificity rates were 80.8% and 99.4%, respectively. In conclusion, the Panbio COVID-19/Flu A&B Panel emerges as a suitable rapid test for detecting COVID-19 and influenza in symptomatic subjects across diverse global populations, exhibiting high sensitivity. The assay achieved a sensitivity of 94.4% in samples with Ct ≤24 for COVID-19 and 92.6% in samples with Ct ≤30 for influenza A and B.ImportanceThe Panbio COVID-19/Flu A&B Panel is a suitable rapid test for detecting COVID-19 and influenza in symptomatic subjects across diverse global populations, exhibiting high sensitivity. The assay achieved a sensitivity of 94.0% in samples with Ct ≤24 for COVID-19 and 92.6% in samples with Ct ≤30 for influenza A and B.
Project description:We evaluated the feasibility of asking pregnant women to self-collect and ship respiratory specimens.In a preliminary laboratory study, we compared the RT-PCR cycle threshold (CT) values of influenza A and B viruses incubated at 4 storage temperatures (from 4 to 35°C) for 6 time periods (8, 24, 48, 72, and 168 hours and 30 days), resulting in 24 conditions that were compared to an aliquot tested after standard freezing (-20°C) (baseline condition). In a subsequent pilot study, during January-February, 2014, we delivered respiratory specimen collection kits to 53 pregnant women with a medically attended acute respiratory illness using three delivery methods.CT values were stable after storage at temperatures <27°C for up to 72 hours for influenza A viruses and 48 hours for influenza B viruses. Of 53 women who received kits during the pilot, 89% collected and shipped nasal swabs as requested. However, 30% (14/47) of the women took over 2 days to collect and ship their specimen. The human control gene, ribonuclease P (RNase P), was detected in 100% of nasal swab specimens. However, the mean CT values for RNase P (26.5, 95% confidence interval [CI] = 26.0-27.1) and for the 8 influenza A virus positives in our pilot (32.2, 95% CI = 28.9-35.5) were significantly higher than the CTs observed in our 2010-2012 study using staff-collected nasal pharyngeal swabs (P-values < 0.01).Self-collection of respiratory specimens is a promising research method, but further research is needed to quantify the sensitivity and specificity of the approach.
Project description:Nasopharyngeal (NP) swabs are considered the highest-yield sample for diagnostic testing for respiratory viruses, including SARS-CoV-2. The need to increase capacity for SARS-CoV-2 testing in a variety of settings, combined with shortages of sample collection supplies, have motivated a search for alternative sample types with high sensitivity. We systematically reviewed the literature to understand the performance of alternative sample types compared to NP swabs. We systematically searched PubMed, Google Scholar, medRxiv, and bioRxiv (last retrieval 1 October 2020) for comparative studies of alternative specimen types (saliva, oropharyngeal [OP], and nasal [NS] swabs) versus NP swabs for SARS-CoV-2 diagnosis using nucleic acid amplification testing (NAAT). A logistic-normal random-effects meta-analysis was performed to calculate % positive alternative-specimen, % positive NP, and % dual positives overall and in subgroups. The QUADAS 2 tool was used to assess bias. From 1,253 unique citations, we identified 25 saliva, 11 NS, 6 OP, and 4 OP/NS studies meeting inclusion criteria. Three specimen types captured lower % positives (NS [82%, 95% CI: 73 to 90%], OP [84%, 95% CI: 57 to 100%], and saliva [88%, 95% CI: 81 to 93%]) than NP swabs, while combined OP/NS matched NP performance (97%, 95% CI: 90 to 100%). Absence of RNA extraction (saliva) and utilization of a more sensitive NAAT (NS) substantially decreased alternative-specimen yield of positive samples. NP swabs remain the gold standard for diagnosis of SARS-CoV-2, although alternative specimens are promising. Much remains unknown about the impact of variations in specimen collection, processing protocols, and population (pediatric versus adult, late versus early in disease course), such that head-to head studies of sampling strategies are urgently needed.
Project description:Congenital cytomegalovirus (cCMV) infection is a major cause of childhood hearing loss and neurodevelopmental delay. Identification of newborns with cCMV infection allows provision of beneficial interventions. However, most infants with cCMV infection have subclinical infection and go undiagnosed. Thus, expanded neonatal CMV testing is increasingly recommended. Saliva is an attractive sample type for CMV testing of newborns, because it is easier to collect than urine and more sensitive for CMV detection than dried blood spots. We evaluated the Alethia CMV assay, a rapid, easy-to-use loop-mediated isothermal amplification method for qualitative detection of CMV DNA in neonatal saliva samples. Saliva swabs were collected prospectively from newborns <21 days old and tested by the Alethia assay according to the manufacturer's instructions. Archived saliva swabs from newborns with cCMV infection were also tested retrospectively. A composite reference method (CRM; two validated PCR assays followed by bidirectional sequencing of amplicons) was performed on all samples as the reference standard comparator. Of 1,480 prospectively collected saliva swabs, 1,472 (99.5%) were negative by both the Alethia assay and CRM, 5 (0.34%) were positive by both the Alethia assay and CRM, and 3 (0.20%) were positive only by the Alethia assay. All 34 (100%) archived swabs from newborns with cCMV infection were positive by both the CRM and the Alethia assay. Overall, the Alethia assay showed 100% and 99.8% positive and negative agreement with the CRM, respectively. The Alethia CMV assay is an accurate method for identifying neonates with cCMV infection and, given its simplicity, appears suitable for CMV testing using neonatal saliva outside a reference laboratory, including remote and resource-limited settings.
Project description:Saliva is an attractive sample for detecting SARS-CoV-2. However, contradictory reports exist concerning the sensitivity of saliva versus nasal swabs. We followed close contacts of COVID-19 cases for up to 14 days from the last exposure and collected self-reported symptoms, midturbinate swabs (MTS), and saliva every 2 or 3 days. Ct values, viral load, and frequency of viral detection by MTS and saliva were compared. Fifty-eight contacts provided 200 saliva-MTS pairs, and 14 contacts (13 with symptoms) had one or more positive samples. Saliva and MTS had similar rates of viral detection (P = 0.78) and substantial agreement (κ = 0.83). However, sensitivity varied significantly with time since symptom onset. Early on (days -3 to 2), saliva had 12 times (95% CI: 1.2, 130) greater likelihood of viral detection and 3.2 times (95% CI: 2.8, 3.8) higher RNA copy numbers compared to MTS. After day 2 of symptoms, there was a nonsignificant trend toward greater sensitivity using MTS. Saliva and MTS demonstrated high agreement making saliva a suitable alternative to MTS for SARS-CoV-2 detection. Saliva was more sensitive early in the infection when the transmission was most likely to occur, suggesting that it may be a superior and cost-effective screening tool for COVID-19. IMPORTANCE The findings of this manuscript are increasingly important with new variants that appear to have shorter incubation periods emerging, which may be more prone to detection in saliva before detection in nasal swabs. Therefore, there is an urgent need to provide the science to support the use of a detection method that is highly sensitive and widely acceptable to the public to improve screening rates and early detection. The manuscript presents the first evidence that saliva-based RT-PCR is more sensitive than MTS-based RT-PCR in detecting SARS-CoV-2 during the presymptomatic period - the critical period for unwitting onward transmission. Considering other advantages of saliva samples, including the lower cost, greater acceptability within the general population, and less risk to health care workers, our findings further supported the use of saliva to identify presymptomatic infection and prevent transmission of the virus.
Project description:Abstract Background Anterior nasal swabs (ANS) are established specimen collection methods for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection detection. While saliva (SA) specimens provide an alternative, few studies have comprehensively characterized the performance of SA specimens in longitudinal studies. Methods We compared SARS-CoV-2 detections between paired self-collected ANS and SA specimens from a household transmission study. Participants recorded symptoms and paired ANS and SA specimens daily for 14 days. Specimens were tested using RT-PCR. We calculated the proportion of detections identified by each specimen type among the detections from both types combined. We computed percent agreement and Kappa statistics to assess concordance in detections. We also computed estimates stratified by presence of symptoms and examined the influence of traditional and inactivating transport media on the performance of ANS. Results We examined 2535 self-collected paired specimens from 216 participants. Among 1238 (49%) paired specimens with detections by either specimen type, ANS identified 77.1% (954; 95% CI, 74.6% to 79.3%) and SA 81.9% (1014; 95% CI, 79.7% to 84.0%), with a difference of 4.9% (95% CI, 1.4% to 8.5%). Overall agreement was 80.0%, and Kappa was 0.6 (95% CI, 0.5 to 0.6). Nevertheless, the difference in the proportion of detections identified by ANS and SA using traditional and inactivating transport media was 32.5% (95% CI, 26.8% to 38.0%) and –9.5% (95% CI, −13.7% to –5.2%), respectively. Among participants who remained asymptomatic, the difference in detections between SA and ANS was 51.2% (95% CI, 31.8% to 66.0%) and 26.1% (95% CI, 0% to 48.5%) using traditional and inactivating media, respectively. Conclusions Self-collected saliva specimens provide a noninvasive alternative to nasal swabs, especially to those collected in traditional transport media, for longitudinal field studies that aim to detect both symptomatic and asymptomatic SARS-CoV-2 infections.
Project description:The gold standard method in the diagnosis of SARS-CoV-2 infection is the detection of viral RNA in the nasopharyngeal sample by RT-PCR. Recently, saliva samples have been suggested as an alternative sample. In the present study, we aimed to compare RT-PCR results in nasopharyngeal, oro-nasopharyngeal and saliva samples of COVID-19 patients. 98 of 200 patients were positive in RT-PCR analysis performed before the hospitalization. On day 0, at least one sample was positive in 67 % of 98 patients. The positivity rate was 83 % for both oro-nasopharyngeal and nasopharyngeal samples, while it was 63 % for saliva samples (p?<?0.001). On day 5, RT-PCR was performed in 59 patients, 34 % had at least one positive result. The positivity rate was 55 % for both saliva and nasopharyngeal samples, while it was 60 % for oro-nasopharyngeal samples. Our study shows that the sampling saliva does not increase the sensitivity of RT-PCR tests at the early stages of infection. However, on the 5th day, viral RNA detection rates in saliva were similar to nasopharyngeal and oro-nasopharyngeal samples. In conclusion, we suggest that, in patients receiving treatment, RT-PCR in saliva, in addition to the standard samples, is important to determine the isolation period and control transmission.