Project description:N(6)-methyladenosine (m(6)A) is the most abundant modification in mammalian mRNA and long noncoding RNA (lncRNA). Recent discoveries of two m(6)A demethylases and cell-type and cell-state-dependent m(6)A patterns indicate that m(6)A modifications are highly dynamic and likely play important biological roles for RNA akin to DNA methylation or histone modification. Proposed functions for m(6)A modification include mRNA splicing, export, stability, and immune tolerance; but m(6)A studies have been hindered by the lack of methods for its identification at single nucleotide resolution. Here, we develop a method that accurately determines m(6)A status at any site in mRNA/lncRNA, termed site-specific cleavage and radioactive-labeling followed by ligation-assisted extraction and thin-layer chromatography (SCARLET). The method determines the precise location of the m(6)A residue and its modification fraction, which are crucial parameters in probing the cellular dynamics of m(6)A modification. We applied the method to determine the m(6)A status at several sites in two human lncRNAs and three human mRNAs and found that m(6)A fraction varies between 6% and 80% among these sites. We also found that many m(6)A candidate sites in these RNAs are however not modified. The precise determination of m(6)A status in a long noncoding RNA also enables the identification of an m(6)A-containing RNA structural motif.
Project description:We introduce m6A Selective Allyl Chemical labeling and Sequencing (m6A-SAC-Seq), a novel method for transcriptome-wide quantitative mapping of m6A at single-nucleotide resolution. The m6A-SAC-Seq employs a dimethyltransferase to selectively label m6A followed by introducing mutations with reverse transcriptase during sequencing. We identified the widespread distributions of m6A and quantitated their fractions in the transcriptome of HeLa, HEK293, HepG2, and human CD34+ hematopoietic stem/progenitor cells (HSPCs).
Project description:We introduce m6A Selective Allyl Chemical labeling and Sequencing (m6A-SAC-Seq), a novel method for transcriptome-wide quantitative mapping of m6A at single-nucleotide resolution. The m6A-SAC-Seq employs a dimethyltransferase to selectively label m6A followed by introducing mutations with reverse transcriptase during sequencing. We identified the widespread distributions of m6A and quantitated their fractions in the transcriptome of HeLa, HEK293, HepG2, and human CD34+ hematopoietic stem/progenitor cells (HSPCs).
Project description:BackgroundSingle-nucleotide polymorphisms (SNPs) in N6-methyladenosine (m6A) related genetic locus play significant roles in tumorigenesis and development. The expression level of many oncogenes and tumour suppressor genes changed because of m6A-associated SNPs. In addition, the relationship between m6A-SNP and bladder cancer (BCa) has not been well studied.MethodsWe screened m6A-SNPs in BCa by combining m6A-SNPs data and GWAS-SNPs data. Expression quantitative trait loci (eQTL) and differential expression gene (DEGs) analyses were performed. In ring finger protein, transmembrane 2 (RNFT2), rs3088107 (C > G) was found to have significant eQTL signals and make RNFT2 gene differentially-regulated mostly in BCa. We validated the expression level of RNFT2 in 32 pairs of BCa tissues and eight BCa cell lines by quantitative real-time PCR (qRT-PCR). Functional assays were performed to investigate the role of rs3088107 and RNFT2 in BCa in vitro.ResultsWe identified 673 m6A-SNPs, which were associated with BCa. Of these m6A-SNPs, 221 showed eQTL signals, amongst which, rs3088107 in RNFT2 showed significant eQTL signals. Results of bioinformatic analyses showed that 11 genes with m6A-SNPs had a differential expression level in BCa. RNFT2 was predicted to be significantly up-regulated in BCa. The qRT-PCR results validated that RNFT2 was highly expressed in our own BCa tissues and cell lines. High expression of RNFT2 also indicated a worse overall survival. We also revealed that rs3088107 (C > G) could inhibit the expression and m6A modification of RNFT2 by qRT-PCR, western-blot and m6A-RIP assays. Moreover, the results of functional assays indicated that RNFT2 promoted BCa cell proliferation and migration.ConclusionThis research found that m6A-SNPs were associated with oncogene RNFT2 in BCa. Furthermore, m6A-SNPs showed great application potential as a new BCa diagnostic biomarker and prognostic indicator.
Project description:We introduce m6A Selective Allyl Chemical labeling and Sequencing (m6A-SAC-Seq), a novel method for transcriptome-wide quantitative mapping of m6A at single-nucleotide resolution. The m6A-SAC-Seq employs a dimethyltransferase to selectively label m6A followed by introducing mutations with reverse transcriptase during sequencing. We identified the widespread distributions of m6A and quantitated their fractions in the transcriptome of HeLa, HEK293, HepG2, and human CD34+ hematopoietic stem/progenitor cells (HSPCs).
Project description:Circular RNAs (circRNAs) are prevalent in eukaryotic cells and viral genomes. Mammalian cells possess innate immunity to detect foreign circRNAs, but the molecular basis of self versus foreign identity in circRNA immunity is unknown. Here, we show that N6-methyladenosine (m6A) RNA modification on human circRNAs inhibits innate immunity. Foreign circRNAs are potent adjuvants to induce antigen-specific T cell activation, antibody production, and anti-tumor immunity in vivo, and m6A modification abrogates immune gene activation and adjuvant activity. m6A reader YTHDF2 sequesters m6A-circRNA and is essential for suppression of innate immunity. Unmodified circRNA, but not m6A-modified circRNA, directly activates RNA pattern recognition receptor RIG-I in the presence of lysine-63-linked polyubiquitin chain to cause filamentation of the adaptor protein MAVS and activation of the downstream transcription factor IRF3. CircRNA immunity has considerable parallel to prokaryotic DNA restriction modification system that transforms nucleic acid chemical modification into organismal innate immunity.
Project description:N6-methyladenosine (m6A) modification is the most universal and abundant post-transcriptional modification of eukaryotic RNA and occurs mainly at the consensus motif RR (m6A) CH (R = A or G, H = A, C, or U) in long internal exons, near stop codons, or in the 3' untranslated region (UTR). "Writers," "erasers," and "readers" are responsible for the occurrence, removal, and recognition of m6A modification, respectively. Substantial evidence has shown that m6A RNA modification can exert important functions in physiological and pathological processes. Cardiovascular diseases (CVDs) are a wide array of disorders affecting heart or vessels, including atherosclerosis (AS), hypertension (HT), ischemia/reperfusion (I/R) injury, myocardial infarction (MI), stroke, cardiac hypertrophy, heart failure (HF), and so on. Despite the advances in lipid-lowering drugs, antihypertensives, antiplatelet agents, and anticoagulation therapy, CVDs are still the leading cause of death worldwide. Recent studies have suggested that m6A modification of RNA may contribute to the pathogenesis of CVDs, providing a novel research insight for CVDs. Herein, we provide an up-of-date summarization of the molecular mechanism of m6A and the roles of m6A in different types of CVDs. At last, we propose that m6A might be a potiential biomarker or therapeutic target for CVDs.
Project description:To understand the global effect of H3K36me3 on m6A modification, we compared the m6A profiling in SETD2 knockdown and control HepG2 cells by miCLIP-seq, and found the depletion of H3K36me3 by SETD2 silencing globally reduced m6A in the human transcriptome.
Project description:Radiation triage and biological dosimetry are critical for the medical management of massive potentially exposed individuals following radiological accidents. Here, we performed a genome-wide screening of radiation-responding mRNAs, whose N6-methyladenosine (m6A) levels showed significant alteration after acute irradiation. The m6A levels of three genes, Ncoa4, Ate1 and Fgf22, in peripheral blood mononuclear cells (PBMCs) of mice showed excellent dose-response relationships and could serve as biomarkers of radiation exposure. Especially, the RNA m6A of Ncoa4 maintained a high level as long as 28 days after irradiation. We demonstrated its responsive specificity to radiation, conservation across the mice, monkeys and humans, and the dose-response relationship in PBMCs from cancer patients receiving radiation therapy. Finally, NOCA4 m6A-based biodosimetric models were constructed for estimating absorbed radiation doses in mice or humans. Collectively, this study demonstrated the potential feasibility of RNA m6A in radiation accidents management and clinical applications.