Project description:Immunogenicity of DNA vaccines can be efficiently improved by adding adjuvants into their formulations. In this regard, the application of nano- and microparticles as vaccines adjuvants, or delivery systems, provides a powerful tool in designing modern vaccines. In the present study, we examined the role of "Supramolecular Hacky Sacks" (SHS) particles, made via the hierarchical self-assembly of a guanosine derivative, as a novel immunomodulator for DNA plasmid preparations. These plasmids code for the proteins HIV-1 Gag (pGag), the wild-type vaccinia virus Western Reserve A27 (pA27L), or a codon-optimized version of the latter (pOD1A27Lopt), which is also linked to the sequence of the outer domain-1 (OD1) from HIV-1 gp120 protein. We evaluated the enhancement of the immune responses generated by our DNA plasmid formulations in a murine model through ELISpot and ELISA assays. The SHS particles increased the frequencies of IFN-γ-producing cells in mice independently immunized with pGag and pA27L plasmids. Moreover, the addition of SHS to pGag and pA27L DNA plasmid formulations enhanced the production of IFN-γ (Th1-type) over IL-4 (Th2-type) cellular immune responses. Furthermore, pGag and pA27L plasmids formulated with SHS, triggered the production of antigen-specific IgG in mice, especially the IgG2a isotype. However, no improvement of either of those adaptive immune responses was observed in mice receiving pOD1A27Lopt+SHS. Here, we demonstrated that SHS particles have the ability to improve both arms of adaptive immunity of plasmid coding "wild-type" antigens without additional strategies to boost their immunogenicity. To the best of our knowledge, this is the first report of SHS guanosine-based particles as DNA plasmid adjuvants.
Project description:Due to emergence of new variants of pathogenic micro-organisms the treatment and immunization of infectious diseases have become a great challenge in the past few years. In the context of vaccine development remarkable efforts have been made to develop new vaccines and also to improve the efficacy of existing vaccines against specific diseases. To date, some vaccines are developed from protein subunits or killed pathogens, whilst several vaccines are based on live-attenuated organisms, which carry the risk of regaining their pathogenicity under certain immunocompromised conditions. To avoid this, the development of risk-free effective vaccines in conjunction with adequate delivery systems are considered as an imperative need to obtain desired humoral and cell-mediated immunity against infectious diseases. In the last several years, the use of nanoparticle-based vaccines has received a great attention to improve vaccine efficacy, immunization strategies, and targeted delivery to achieve desired immune responses at the cellular level. To improve vaccine efficacy, these nanocarriers should protect the antigens from premature proteolytic degradation, facilitate antigen uptake and processing by antigen presenting cells, control release, and should be safe for human use. Nanocarriers composed of lipids, proteins, metals or polymers have already been used to attain some of these attributes. In this context, several physico-chemical properties of nanoparticles play an important role in the determination of vaccine efficacy. This review article focuses on the applications of nanocarrier-based vaccine formulations and the strategies used for the functionalization of nanoparticles to accomplish efficient delivery of vaccines in order to induce desired host immunity against infectious diseases.
Project description:Interferon lambdas (IFN-λs; IFNL1-4) modulate immunity in the context of infections and autoimmune diseases, through a network of induced genes. IFN-λs act by binding to the heterodimeric IFN-λ receptor (IFNLR), activating a STAT phosphorylation-dependent signaling cascade. Thereby hundreds of IFN-stimulated genes are induced, which modulate various immune functions via complex forward and feedback loops. When compared to the well-characterized IFN-α signaling cascade, three important differences have been discovered. First, the IFNLR is not ubiquitously expressed: in particular, immune cells show significant variation in the expression levels of and susceptibilities to IFN-λs. Second, the binding affinities of individual IFN-λs to the IFNLR varies greatly and are generally lower compared to the binding affinities of IFN-α to its receptor. Finally, genetic variation in the form of a series of single-nucleotide polymorphisms (SNPs) linked to genes involved in the IFN-λ signaling cascade has been described and associated with the clinical course and treatment outcomes of hepatitis B and C virus infection. The clinical impact of IFN-λ signaling and the SNP variations may, however, reach far beyond viral hepatitis. Recent publications show important roles for IFN-λs in a broad range of viral infections such as human T-cell leukemia type-1 virus, rotaviruses, and influenza virus. IFN-λ also potentially modulates the course of bacterial colonization and infections as shown for Staphylococcus aureus and Mycobacterium tuberculosis. Although the immunological processes involved in controlling viral and bacterial infections are distinct, IFN-λs may interfere at various levels: as an innate immune cytokine with direct antiviral effects; or as a modulator of IFN-α-induced signaling via the suppressor of cytokine signaling 1 and the ubiquitin-specific peptidase 18 inhibitory feedback loops. In addition, the modulation of adaptive immune functions via macrophage and dendritic cell polarization, and subsequent priming, activation, and proliferation of pathogen-specific T- and B-cells may also be important elements associated with infectious disease outcomes. This review summarizes the emerging details of the IFN-λ immunobiology in the context of the host immune response and viral and bacterial infections.
Project description:Eleven manzamine type alkaloids, two beta-carbolines, and five nucleosides have been isolated from an Indonesian sponge. Among these are the previously characterized 12,34-oxamanzamine A, 12,34-oxamanzamine E, manzamine A (1), 8-hydroxymanzamine A, 6-deoxymanzamine X, manzamine E (2), manzamine X, manzamine F (4), norharman, thymine, 2',3'-didehydro-2',3'-dideoxyuridine, uracil, thymidine, and 2'-deoxyuridine. The structures for the five new compounds have been assigned as 32,33-dihydro-31-hydroxymanzamine A (3), 32,33-dihydro-6-hydroxymanzamine A-35-one (5), des-N-methylxestomanzamine A (6), 32,33-dihydro-6,31-dihydroxymanzamine A (7), and 1,2,3,4-tetrahydronorharman-1-one (8), on the basis of NMR and X-ray data. The bioactivity and SAR of the manzamines against malaria, TB, and leishmania are also presented. The structural revision of two previously reported pyrazoles as uracil and thymine is also discussed.
Project description:Southeast China is frequently hit by tropical cyclones (TCs) with significant economic and health burdens each year. However, there is a lack of understanding of what infectious diseases could be affected by tropical cyclones. This study aimed to examine the impacts of tropical cyclones on notifiable infectious diseases in southeast China. Disease data between 2005 and 2011 from four coastal provinces in southeast China, including Guangdong, Hainan, Zhejiang, and Fujian province, were collected. Numbers of cases of 14 infectious diseases were compared between risk periods and reference periods for each tropical cyclone. Risk ratios (RRs) were calculated to estimate the risks. TCs were more likely to increase the risk of bacillary dysentery, paratyphoid fever, dengue fever and acute hemorrhagic conjunctivitis (ps < 0.05) than to decrease the risk, more likely to decrease the risk of measles, mumps, varicella and vivax malaria (ps < 0.05) than to increase the risk. In conclusion, TCs have mixed effects on the risk of infectious diseases. TCs are more likely to increase the risk of intestinal and contact transmitted infectious diseases than to decrease the risk, and more likely to decrease the risk of respiratory infectious diseases than to increase the risk. Findings of this study would assist in developing public health strategies and interventions for the reduction of the adverse health impacts from tropical cyclones.
Project description:The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.
Project description:Since its discovery in 2003, the type III interferon-λ (IFN-λ) family has been found to contribute significantly to the host response to infection. Whilst IFN-λ shares many features with type I IFN induction and signalling pathways, the tissue-specific restricted expression of its receptor, IL28RA, makes IFN-λ a major mediator of host innate immunity in tissues and organs with a high epithelial cell content. Host susceptibility and responses to infection are known to be heterogeneous, and the identification of common genetic variants linked to disease outcome by genome-wide association studies (GWAS) has underscored the significance of host polymorphisms in responses to infection. Several such GWAS have highlighted the IFN-λ locus on chromosome 19q13 as an area of genetic variation significantly associated with hepatitis C virus (HCV) infection, and the rs12979860 genotype can be used in clinical practice as a biomarker for predicting a successful response to treatment with pegylated IFN and ribavarin. Here, we discuss IFN-λ genetic polymorphisms and their role in HCV and other infectious diseases as well as their potential impact on clinical diagnostics, patient stratification and therapy. Finally, the broader role of IFN-λ in the immunopathogenesis of non-infectious inflammatory diseases is considered.