Unknown

Dataset Information

0

Biomass-Derived Activated Carbon-Supported Copper Catalyst: An Efficient Heterogeneous Magnetic Catalyst for Base-Free Chan-Lam Coupling and Oxidations.


ABSTRACT: Development of heterogeneous catalysts from biomass-derived activated carbon is a challenging task. Biomass-derived activated carbon possesses a large specific surface area, highly porous structure, and good thermal/chemical stability. Magnetic copper catalysts based on biomass-derived activated carbon exhibited good catalytic activity in base-free Chan-Lam coupling and oxidations. Herein, biomass-derived activated carbon was prepared by the carbonization of neem dead leaves (abundant waste biomass) followed by chemical activation with KOH. Such a porous carbon material was used as a low cost and highly efficient support material for the preparation of inexpensive and environmentally benign magnetic catalysts [Cu@KF-C/MFe2O4, M = Co, Cu, Ni, and Zn]. In addition, KF modification was done to impart basic character to the catalyst that can perform C-N coupling under base-free conditions. Initially, Brunauer-Emmett-Teller (BET) analysis of the synthesized catalysts was carried out, which indicated that Cu@KF-C/CoFe2O4 possess more surface area as well as pore volume, and so accounting for the highest activity among the other synthesized catalysts. Further, X-ray photoelectron spectroscopy (XPS) analysis was performed, which inferred that Cu@KF-C/CoFe2O4 contains most of the copper in reduced form, i.e., Cu(0), which is the active species responsible for better catalytic activity toward Chan-Lam coupling reactions as well as oxidation of alcohols and hydrocarbons. The physiochemical properties of the most active catalyst, Cu@KF-C/CoFe2O4, was examined by BET, XPS, Fourier transform infrared Spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission gun scanning electron microscopy (FEG-SEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray (EDX) mapping, energy dispersive X-ray (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), powder X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). Moreover, Cu@KF-C/CoFe2O4 shows excellent stability as well as reusability and could be easily separated with the help of an external magnet.

SUBMITTER: Sharma S 

PROVIDER: S-EPMC8340099 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8143265 | biostudies-literature
| S-EPMC6003411 | biostudies-literature
| S-EPMC7876119 | biostudies-literature
| S-EPMC4979635 | biostudies-literature
| S-EPMC8294000 | biostudies-literature
| S-EPMC7794874 | biostudies-literature
| S-EPMC7155010 | biostudies-literature