Project description:IntroductionThe novel coronavirus (CoV) disease 2019 (COVID-19) is a viral infection that causes severe acute respiratory syndrome (SARS). It is believed that early reports of COVID-19 cases were noticed in December 2019 and soon after it became a global public health emergency. It is advised that COVID-19 transmits through human to human contact and in most cases, it remains asymptomatic. Several approaches are being utilized to control the outbreak of this fatal viral disease. microRNAs (miRNAs) are known signature therapeutic tool for the viral diseases; they are small non-coding RNAs that target the mRNAs to inhibit their post-transcriptional expression, therefore, impeding their functions, can serve as watchdogs or micromanagers in the cells.Areas coveredThis review work delineated COVID-19 and its association with SARS and Middle East respiratory syndrome (MERS), the possible role of miRNAs in the pathogenesis of COVID-19, and therapeutic potential of miRNAs and their effective delivery to treat COVID-19.Expert opinionThis review highlighted the importance of various miRNAs and their potential role in fighting with this pandemic as therapeutic molecules utilizing nanotechnology.
Project description:Persons experiencing homelessness (PEH) or rough sleeping are a vulnerable population, likely to be disproportionately affected by the coronavirus disease 2019 (COVID-19) pandemic. The impact of COVID-19 infection on this population is yet to be fully described in England. We present a novel method to identify COVID-19 cases in this population and describe its findings. A phenotype was developed and validated to identify PEH or rough sleeping in a national surveillance system. Confirmed COVID-19 cases in England from March 2020 to March 2022 were address-matched to known homelessness accommodations and shelters. Further cases were identified using address-based indicators, such as NHS pseudo postcodes. In total, 1835 cases were identified by the phenotype. Most were <39 years of age (66.8%) and male (62.8%). The proportion of cases was highest in London (29.8%). The proportion of cases of a minority ethnic background and deaths were disproportionality greater in this population, compared to all COVID-19 cases in England. This methodology provides an approach to track the impact of COVID-19 on a subset of this population and will be relevant to policy making. Future surveillance systems and studies may benefit from this approach to further investigate the impact of COVID-19 and other diseases on select populations.
Project description:Subwavelength-scale metal and dielectric nanostructures have served as important building blocks for electromagnetic metamaterials, providing unprecedented opportunities for manipulating the optical response of the matter. Recently, hyperbolic metamaterials have been drawing particular interest because of their unusual optical properties and functionalities, such as negative refraction and hyperlensing of light. Here, as a promising application of a hyperbolic metamaterial at visible frequency, we propose an invisible nanotube that consists of metal and dielectric alternating thin layers. The theoretical study of the light scattering of the layered nanotube reveals that almost-zero scattering can be achieved at a specific wavelength when the transverse-electric- or transverse-magnetic-polarized light is incident to the nanotube. In addition, the layered nanotube can be described as a radial-anisotropic hyperbolic metamaterial nanotube. The low scattering occurs when the effective permittivity of the hyperbolic nanotube in the angular direction is near zero, and thus the invisibility of the layered nanotube can be efficiently obtained by analyzing the equivalent hyperbolic nanotube. Our new method to design and tune an invisible nanostructure represents a significant step toward the practical implementation of unique nanophotonic devices such as invisible photodetectors and low-scattering near-field optical microscopes.
Project description:The dyadic perspective is important to understand the mutual influence and interdependence of both the person living with dementia and their care partner. This perspective is routinely adopted in social research programs for dementia and many dyadic interventions have been developed. However, economic evaluation and modelling to date has often failed to incorporate caregivers' perspectives, and their respective costs and outcomes while giving care for the person with dementia. On the occasions that this has been done, caregivers were represented as "informal costs" associated with dementia. This limited perspective cannot incorporate two-way interactions of the dyad in economic evaluations of dementia programs. This paper provides an overview of the possible interactions between people living with dementia and care partners as discovered in social science literature in the past 20 years. We demonstrate the strength of the relationships and discuss strategies for incorporating the dyadic perspective in economic evaluations of dementia programs in the future.
Project description:The motion energy model is the standard account of motion detection in animals from beetles to humans. Despite this common basis, we show here that a difference in the early stages of visual processing between mammals and insects leads this model to make radically different behavioural predictions. In insects, early filtering is spatially lowpass, which makes the surprising prediction that motion detection can be impaired by "invisible" noise, i.e. noise at a spatial frequency that elicits no response when presented on its own as a signal. We confirm this prediction using the optomotor response of praying mantis Sphodromantis lineola. This does not occur in mammals, where spatially bandpass early filtering means that linear systems techniques, such as deriving channel sensitivity from masking functions, remain approximately valid. Counter-intuitive effects such as masking by invisible noise may occur in neural circuits wherever a nonlinearity is followed by a difference operation.
Project description:The arts can aid the exploration of individual and collective illness narratives, with empowering effects on both patients and caregivers. The artist, partly acting as conduit, can translate and re-present illness experiences into artwork. But how are these translated experiences received by the viewer-and specifically, how does an audience respond to an art installation themed around paediatric heart transplantation and congenital heart disease? The installation, created by British artist Sofie Layton and titled Making the Invisible Visible, was presented at an arts-and-health event. The piece comprised three-dimensional printed medical models of hearts with different congenital defects displayed under bell jars on a stainless steel table reminiscent of the surgical theatre, surrounded by hospital screens. The installation included a soundscape, where the voice of a mother recounting the journey of her son going through heart transplantation was interwoven with the voice of the artist reading medical terminology. A two-part survey was administered to capture viewers' expectations and their response to the piece. Participants (n=125) expected to acquire new knowledge around heart disease, get a glimpse of patients' experiences and be surprised by the work, while after viewing the piece they mostly felt empathy, surprise, emotion and, for some, a degree of anxiety. Viewers found the installation more effective in communicating the experience of heart transplantation than in depicting the complexity of cardiovascular anatomy (p<0.001, z=7.56). Finally, analysis of open-ended feedback highlighted the intimacy of the installation and the privilege viewers felt in sharing a story, particularly in relation to the soundscape, where the connection to the narrative in the piece was reportedly strengthened by the use of sound. In conclusion, an immersive installation including accurate medical details and real stories narrated by patients can lead to an empathic response and an appreciation of the value of illness narratives.
Project description:Background: Inhaled medications for cystic fibrosis (CF) are effective but adherence is low. Clinicians find it difficult to estimate how much treatment people with CF (PWCF) take, whilst objective adherence measurement demonstrates that patients are poorly calibrated with a tendency to over-estimate actual adherence. The diagnostic approach to a PWCF with deteriorating clinical status and very low adherence is likely to be different to the approach to a deteriorating patient with optimal adherence. Access to objective adherence data in routine consultations could help to overcome diagnostic challenges for clinicians and people with CF. Attitudes of clinicians to the use and importance of routinely available adherence data is unknown. Methods: We conducted an online questionnaire survey with UK CF centres. We asked five questions relating to the current use and perception of objective measurements of adherence in routine care. Results: A total of eight CF centres completed the questionnaire. Few of the responding centres have adherence data readily available in routine clinics (13% of centres use medicines possession ratio; of centres with access to I-nebs® it was estimated that 17% of patients had I-neb data regularly available in clinics). All centres considered the availability of objectively measured adherence data to be important. Respondents identified that systems developed to provide adherence data in clinical practice must provide data to both clinicians and patients that is readily understood and easy to use. Conclusions: Centres perceived the availability of adherence data in routine care to be important but objective measures of adherence is rarely available at present.
Project description:The relative ease of isolation of mesenchymal stem cells (MSCs) from different tissues coupled with their culture expansion in vitro and their differentiation capacity to mesodermal, endodermal and ectodermal lineages have made these cells attractive for a large number of therapeutic applications. In recent years, there has been remarkable progress in the utilization of MSCs in diverse clinical indications both in animal models and human clinical trials. However, the potential of MSCs to control or treat viral diseases is still in its infancy. In this study, we report quantitative data on the MSC-based clinical trials over the last ten years as they appear on the online database of clinical research studies from US National Institutes of Health. In particular, we provide comprehensive review of either completed or ongoing clinical trials using MSCs for virus-associated diseases focusing on HIV, hepatitis B virus and COVID-19 virus.
Project description:Integrating objects with their context is a key step in interpreting complex visual scenes. Here, we used functional Magnetic Resonance Imaging (fMRI) while participants viewed visual scenes depicting a person performing an action with an object that was either congruent or incongruent with the scene. Univariate and multivariate analyses revealed different activity for congruent vs. incongruent scenes in the lateral occipital complex, inferior temporal cortex, parahippocampal cortex, and prefrontal cortex. Importantly, and in contrast to previous studies, these activations could not be explained by task-induced conflict. A secondary goal of this study was to examine whether processing of object-context relations could occur in the absence of awareness. We found no evidence for brain activity differentiating between congruent and incongruent invisible masked scenes, which might reflect a genuine lack of activation, or stem from the limitations of our study. Overall, our results provide novel support for the roles of parahippocampal cortex and frontal areas in conscious processing of object-context relations, which cannot be explained by either low-level differences or task demands. Yet they further suggest that brain activity is decreased by visual masking to the point of becoming undetectable with our fMRI protocol.