Following Structural Changes by Thermal Denaturation Using Trapped Ion Mobility Spectrometry-Mass Spectrometry.
Ontology highlight
ABSTRACT: The behavior of biomolecules as a function of the solution temperature is often crucial to assessing their biological activity and function. While heat-induced changes of biomolecules are traditionally monitored using optical spectroscopy methods, their conformational changes and unfolding transitions remain challenging to interpret. In the present work, the structural transitions of bovine serum albumin (BSA) in native conditions (100 mM aqueous ammonium acetate) were investigated as a function of the starting solution temperature (T ∼ 23-70 °C) using a temperature-controlled nanoelectrospray ionization source (nESI) coupled to a trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) instrument. The charge state distribution of the monomeric BSA changed from a native-like, narrow charge state ([M + 12H]12+ to [M + 16H]16+ at ∼23 °C) and narrow mobility distribution toward an unfolded-like, broad charge state (up to [M + 46H]46+ at ∼70 °C) and broad mobility distribution. Inspection of the average charge state and collision cross section (CCS) distribution suggested a two-state unfolding transition with a melting temperature Tm ∼ 56 ± 1 °C; however, the inspection of the CCS profiles at the charge state level as a function of the solution temperature showcases at least six structural transitions (T1-T7). If the starting solution concentration is slightly increased (from 2 to 25 μM), this method can detect nonspecific BSA dimers and trimers which dissociate early (Td ∼ 34 ± 1 °C) and may disturb the melting curve of the BSA monomer. In a single experiment, this technology provides a detailed view of the solution, protein structural landscape (mobility vs solution temperature vs relative intensity for each charge state).
SUBMITTER: Jeanne Dit Fouque K
PROVIDER: S-EPMC8341290 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA