CircEVI5 acts as a miR-4793-3p sponge to suppress the proliferation of gastric cancer.
Ontology highlight
ABSTRACT: Circular RNAs (circRNAs) are a novel class of endogenous noncoding RNAs (ncRNAs) with a covalently closed loop structure. Accumulating evidence shows that circRNAs play vital roles in the growth, metastasis, treatment and prognosis of various cancers. However, the detailed functions and underlying mechanisms of circEVI5 (hsa_circ_0013162) in gastric cancer (GC) remain undocumented. In this study, the expression levels and prognostic value of circEVI5 were validated in GC tissue samples by using qRT-PCR. circEVI5 was significantly downregulated in GC tissues and cells, and low circEVI5 expression was correlated with poor prognosis. Next, in vitro CCK-8 assay, EdU incorporation assay, PI staining cell cycle assay, and in vivo xenograft mouse models were conducted to assess the functions of circEVI5. Gain of function experiments indicated that circEVI5 could inhibit GC cell proliferation and retard the cell cycle. Moreover, bioinformatics prediction showed that circEVI5 binds to miR-4793-3p, while FOXO1 may be a target of miR-4793-3p. Pull-down assays, RNA immunoprecipitation (RIP) assays, luciferase assays, and western blot were used to confirm the interactions between circEVI5, miR-4793-3p, and FOXO1. Functional assays demonstrated that circEVI5 suppressed the proliferation of GC by sponging miR-4793-3p and increasing FOXO1 expression levels. In conclusion, our study demonstrated that circEVI5 can bind miR-4793-3p as a ceRNA to eliminate the negative regulation of FOXO1, therefore suppressing GC proliferation.
SUBMITTER: Yan M
PROVIDER: S-EPMC8342614 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA