Project description:A 65-year-old female presenting with worsening dyspnea and notable weight loss were found to have a systolic murmur on physical examination. On workup with computed tomography (CT) angiogram, a solid mass was found extending from the inferior vena cava into the right ventricle. Transesophageal echocardiography demonstrated this mass extension causing right ventricular outflow tract obstruction. After surgical removal, the pathology of the mass was endometrial leiomyosarcoma.
Project description:BackgroundRight ventricular outflow tract obstruction in patients with congenital heart disease is usually assessed using echocardiographic peak instantaneous gradient at rest. Since right ventricular outflow tract obstruction may change during exercise (dynamic right ventricular outflow tract obstruction), we present a case emphasizing the potential use of exercise cardiac magnetic resonance imaging (CMR).Case summaryWe discuss a 15-year-old patient with repaired mid-ventricular sub-pulmonary stenosis type double-chambered right ventricle causing right ventricular outflow tract obstruction and symptoms on exertion. In this case, exercise CMR imaging provided additional information, allowing adequate surgical planning.DiscussionThe additional value of exercise CMR imaging in a case of right ventricular outflow tract obstruction was described. Although exercise cardiac magnetic resonance imaging did not show a significant increase in peak gradient across the right ventricular outflow tract obstruction, shifting and D-shaping of the interventricular septum with subsequent insufficient left ventricular filling (preload) was observed in the patient with recurrent double-chambered right ventricle. This case demonstrates how exercise CMR imaging can be helpful in the clinical decision beyond standard echocardiographic evaluation by providing additional evidence of adverse haemodynamics during exercise.
Project description:Right ventricular failure was induced thourgh pulmonary banding in 11 pigs. Right ventricular failure was defined as a SRVP >50 mmHg during two hours. After right ventricular failure was induced, half the pigs were treatmed with a Glenn-shunt combined with pulmonary banding for one hour, and the other half served as control group with pulmonary banding only. The aim was to study the change in global gene expression during right ventricular failure due to pulmonary banding, and the effect of volume unloading during pulmonary banding. 11 pigs. Samples at the following time periods: 1) Baseline 2) Right ventricular failure 3) Treatment with modified Glenn-shunt/Control. After Right ventricular failure, pigs were divided into two groups a) Treatment with modified Glenn-shunt or b) Control group
Project description:The case of a patient who suffered cardiac arrest while undergoing transesophageal echocardiography (TEE) is presented here. A 75-year-old man with moderate right ventricular (RV) dysfunction and pulmonary hypertension became bradycardic and hypotensive after receiving propofol for procedural sedation. His profound hypotension ultimately led to a pulseless electrical activity (PEA) cardiac arrest. TEE images captured immediately prior to cardiac arrest show a severely dilated and hypokinetic RV, consistent with acute right ventricular failure. This case highlights the potentially fatal consequences of procedural sedation in patients with RV dysfunction and pulmonary hypertension.
Project description:Right ventricular failure was induced thourgh pulmonary banding in 11 pigs. Right ventricular failure was defined as a SRVP >50 mmHg during two hours. After right ventricular failure was induced, half the pigs were treated with a Glenn-shunt combined with pulmonary banding for one hour, and the other half served as control group with pulmonary banding only. The aim was to study the change in global gene expression during right ventricular failure due to pulmonary banding, and the effect of volume unloading during pulmonary banding.
Project description:Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (CMR) can reveal the detailed anatomy and function of the tricuspid valve and right ventricle (RV). Quantification of tricuspid regurgitation (TR) and analysis of RV function have prognostic implications. With the recently available transcatheter treatment options for diseases of the tricuspid valve, evaluation of the tricuspid valve using CT and CMR has become important in terms of patient selection and procedural guidance. Moreover, CT enables post-procedural investigation of the causes of valve dysfunction, such as pannus or thrombus. This review describes the anatomy of the tricuspid valve and CT and CMR imaging protocols for right heart evaluation, including RV function and TR analyses. We also demonstrate the pre-procedural planning for transcatheter treatment of TR and imaging of postoperative complications using CT.
Project description:A porcine microarray study of acute right ventricular failure due to coronary artery ligation of the right ventricular free wall. 1. Baseline sample from the free right ventricular wall. 2. Ligation of the coronary arteries on the right ventricular free wall induced right ventricular heart failure. When the pressure in the right atrium rose to >20 mmHg, heart failure samples were taken from the free right ventricular wall.
Project description:Background: Right ventricular (RV) function predicts survival in numerous cardiac conditions, including left heart disease. The reference standard for non-invasive assessment of RV function is cardiac magnetic resonance imaging (CMR). The aim of this study was to investigate the association between pre-procedural CMR-derived RV functional parameters and mortality in patients undergoing transcatheter aortic valve implantation (TAVI). Methods: Patients scheduled for TAVI were recruited to undergo pre-procedural CMR. Volumetric function and global longitudinal and circumferential strain (GLS and GCS) of the RV and left ventricle (LV) were measured. The association with the primary endpoint (1-year all-cause mortality) was analyzed with Cox regression. Results: Of 133 patients undergoing CMR, 113 patients were included in the analysis. Mean age was 81.8 ± 5.8 years, and 65% were female. Median follow-up was 3.9 [IQR 2.3-4.7] years. All-cause and cardiovascular mortality was 14 and 12% at 1 year, and 28 and 20% at 3 years, respectively. One-year all-cause mortality was significantly predicted by RV GLS [HR = 1.109 (95% CI: 1.023-1.203); p = 0.012], RV ejection fraction [HR = 0.956 (95% CI: 0.929-0.985); p = 0.003], RV end-diastolic volume index [HR = 1.009 (95% CI: 1.001-1.018); p = 0.025], and RV end-systolic volume index [HR = 1.010 (95% CI: 1.003-1.017); p = 0.005]. In receiver operating characteristic (ROC) analysis for 1-year all-cause mortality, the area under the curve was 0.705 (RV GLS) and 0.673 (RV EF). Associations decreased in strength at longer follow-up. None of the LV parameters was associated with mortality. Conclusions: RV function predicts intermediate-term mortality in TAVI patients while LV parameters were not associated with outcomes. Inclusion of easily obtainable RV GLS may improve future risk scores.
Project description:BackgroundHigh-altitude deacclimatization syndrome (HADAS) is a severe public health issue. The study of the changes in right ventricular function caused by high-altitude deacclimatization (HADA) is of great significance for the prevention and treatment of HADAS.MethodsSix-week-old, male Sprague Dawley (SD) rats were randomly divided into the plain, plateau and the HADA group. Rats in the plateau and plain group were exposed to altitudes of 3,850 and 360 m, respectively, for 12 weeks. Rats in HADA group were exposed to the plateau altitude of 3,850 m for 12 weeks and subsequently transported to the plain altitude of 360 m for 4 weeks. Right ventricular ejection fraction (RVEF), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and myocardial strain parameters, including the global longitudinal strain (GLS), global radial strain (GRS), and global circumferential strain (GCS), were evaluated by 7.0T cardiac magnetic resonance (CMR). The levels of red blood cell (RBC), hemoglobin (HGB), and hematocrit (HCT) in the blood were measured, and hematoxylin-eosin (HE) staining was used to observe the pathological changes in the myocardium.ResultsIn rats in the plateau group, the right ventricular fibrous space was slightly widened, and partial focal steatosis were observed. However, in the HADA group, only a few focal steatoses were found. Rats in the plateau group had elevated levels of RBC, HGB and HCT, increased right ventricular end-diastolic volume (RVEDV), right ventricular end-systolic volume (RVESV) and right ventricular stroke volume (RVSV), and decreased right ventricular global longitudinal strain (RVGLS), right ventricular global circumferential strain (RVGCS), and right ventricular global radial strain (RVGRS) compared to rats in the plain group (P<0.001). The RVEDV, RVGCS, and RVGRS in the HADA group basically returned to the plain state. Interestingly, the RVESV in the HADA group was higher, while the RVSV, RVEF, and RVGLS were lower than those in the other two groups.ConclusionsAfter 12 weeks of exposure to high-altitude environment, there were some pathological changes and the whole contractile strain of the right ventricle was observed. Some pathological changes in the myocardial tissue and stroma recovered after returning to the plain for 4 weeks. However, the right ventricular systolic function and strain did not recover completely.