Project description:A 65-year-old female presenting with worsening dyspnea and notable weight loss were found to have a systolic murmur on physical examination. On workup with computed tomography (CT) angiogram, a solid mass was found extending from the inferior vena cava into the right ventricle. Transesophageal echocardiography demonstrated this mass extension causing right ventricular outflow tract obstruction. After surgical removal, the pathology of the mass was endometrial leiomyosarcoma.
Project description:BackgroundRight ventricular outflow tract obstruction in patients with congenital heart disease is usually assessed using echocardiographic peak instantaneous gradient at rest. Since right ventricular outflow tract obstruction may change during exercise (dynamic right ventricular outflow tract obstruction), we present a case emphasizing the potential use of exercise cardiac magnetic resonance imaging (CMR).Case summaryWe discuss a 15-year-old patient with repaired mid-ventricular sub-pulmonary stenosis type double-chambered right ventricle causing right ventricular outflow tract obstruction and symptoms on exertion. In this case, exercise CMR imaging provided additional information, allowing adequate surgical planning.DiscussionThe additional value of exercise CMR imaging in a case of right ventricular outflow tract obstruction was described. Although exercise cardiac magnetic resonance imaging did not show a significant increase in peak gradient across the right ventricular outflow tract obstruction, shifting and D-shaping of the interventricular septum with subsequent insufficient left ventricular filling (preload) was observed in the patient with recurrent double-chambered right ventricle. This case demonstrates how exercise CMR imaging can be helpful in the clinical decision beyond standard echocardiographic evaluation by providing additional evidence of adverse haemodynamics during exercise.
Project description:Right ventricular failure was induced thourgh pulmonary banding in 11 pigs. Right ventricular failure was defined as a SRVP >50 mmHg during two hours. After right ventricular failure was induced, half the pigs were treatmed with a Glenn-shunt combined with pulmonary banding for one hour, and the other half served as control group with pulmonary banding only. The aim was to study the change in global gene expression during right ventricular failure due to pulmonary banding, and the effect of volume unloading during pulmonary banding. 11 pigs. Samples at the following time periods: 1) Baseline 2) Right ventricular failure 3) Treatment with modified Glenn-shunt/Control. After Right ventricular failure, pigs were divided into two groups a) Treatment with modified Glenn-shunt or b) Control group
Project description:The case of a patient who suffered cardiac arrest while undergoing transesophageal echocardiography (TEE) is presented here. A 75-year-old man with moderate right ventricular (RV) dysfunction and pulmonary hypertension became bradycardic and hypotensive after receiving propofol for procedural sedation. His profound hypotension ultimately led to a pulseless electrical activity (PEA) cardiac arrest. TEE images captured immediately prior to cardiac arrest show a severely dilated and hypokinetic RV, consistent with acute right ventricular failure. This case highlights the potentially fatal consequences of procedural sedation in patients with RV dysfunction and pulmonary hypertension.
Project description:Pericardial effusions can occur as either circumferential or loculated when referencing their anatomic distribution in the pericardium. These effusions can result from multiple different etiologies, including malignancy, infection, trauma, connective tissue disease, acute pericarditis drug induced, or idiopathic. Loculated pericardial effusions can be difficult to manage. Even small loculated effusions can result in hemodynamic compromise. Oftentimes in the acute setting, point of care ultrasound can be used to evaluate pericardial effusions directly at the bedside. We present a case of a malignant loculated pericardial effusion and offer insight into management and clinical evaluation using point of care ultrasound.
Project description:Right ventricular failure was induced thourgh pulmonary banding in 11 pigs. Right ventricular failure was defined as a SRVP >50 mmHg during two hours. After right ventricular failure was induced, half the pigs were treated with a Glenn-shunt combined with pulmonary banding for one hour, and the other half served as control group with pulmonary banding only. The aim was to study the change in global gene expression during right ventricular failure due to pulmonary banding, and the effect of volume unloading during pulmonary banding.
Project description:Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (CMR) can reveal the detailed anatomy and function of the tricuspid valve and right ventricle (RV). Quantification of tricuspid regurgitation (TR) and analysis of RV function have prognostic implications. With the recently available transcatheter treatment options for diseases of the tricuspid valve, evaluation of the tricuspid valve using CT and CMR has become important in terms of patient selection and procedural guidance. Moreover, CT enables post-procedural investigation of the causes of valve dysfunction, such as pannus or thrombus. This review describes the anatomy of the tricuspid valve and CT and CMR imaging protocols for right heart evaluation, including RV function and TR analyses. We also demonstrate the pre-procedural planning for transcatheter treatment of TR and imaging of postoperative complications using CT.
Project description:A porcine microarray study of acute right ventricular failure due to coronary artery ligation of the right ventricular free wall. 1. Baseline sample from the free right ventricular wall. 2. Ligation of the coronary arteries on the right ventricular free wall induced right ventricular heart failure. When the pressure in the right atrium rose to >20 mmHg, heart failure samples were taken from the free right ventricular wall.
Project description:Subpulmonary membrane is a rare cause of right ventricular outflow tract (RVOT) obstruction, and only a few case reports exist with or without associated ventricular septal defect. We report a series of three cases with subpulmonary membrane causing RVOT obstruction. Two of these have been operated (the first case operated after unsuccessful attempt at balloon dilatation), and the third case is on follow-up at present.