Project description:BackgroundMitral valve surgery (MVS) is an effective treatment for mitral valve diseases. There is a lack of reliable personalized risk prediction models for mortality in patients undergoing mitral valve surgery. Our aim was to develop a risk stratification system to predict all-cause mortality in patients after mitral valve surgery.MethodsDifferent machine learning models for the prediction of all-cause mortality were trained on a derivation cohort of 1,883 patients undergoing mitral valve surgery [split into a training cohort (70%) and internal validation cohort (30%)] to predict all-cause mortality. Forty-five clinical variables routinely evaluated at discharge were used to train the models. The best performance model (PRIME score) was tested in an externally validated cohort of 220 patients undergoing mitral valve surgery. The model performance was evaluated according to the area under the curve (AUC). Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were compared with existing risk strategies.ResultsAfter a median follow-up of 2 years, there were 133 (7.063%) deaths in the derivation cohort and 17 (7.727%) deaths in the validation cohort. The PRIME score showed an AUC of 0.902 (95% confidence interval [CI], 0.849-0.956) in the internal validation cohort and 0.873 (95% CI: 0.769-0.977) in the external validation cohort. In the external validation cohort, the performance of the PRIME score was significantly improved compared with that of the existing EuroSCORE II (NRI = 0.550, [95% CI 0.001-1.099], P = 0.049, IDI = 0.485, [95% CI 0.230-0.741], P < 0.001).ConclusionMachine learning-based model (the PRIME score) that integrate clinical, demographic, imaging, and laboratory features demonstrated superior performance for the prediction of mortality patients after mitral valve surgery compared with the traditional risk model EuroSCORE II.Clinical trial registration[http://www.clinicaltrials.gov], identifier [NCT05141292].
Project description:AimsOur aim was to develop a machine learning (ML)-based risk stratification system to predict 1-, 2-, 3-, 4-, and 5-year all-cause mortality from pre-implant parameters of patients undergoing cardiac resynchronization therapy (CRT).Methods and resultsMultiple ML models were trained on a retrospective database of 1510 patients undergoing CRT implantation to predict 1- to 5-year all-cause mortality. Thirty-three pre-implant clinical features were selected to train the models. The best performing model [SEMMELWEIS-CRT score (perSonalizEd assessMent of estiMatEd risk of mortaLity With machinE learnIng in patientS undergoing CRT implantation)], along with pre-existing scores (Seattle Heart Failure Model, VALID-CRT, EAARN, ScREEN, and CRT-score), was tested on an independent cohort of 158 patients. There were 805 (53%) deaths in the training cohort and 80 (51%) deaths in the test cohort during the 5-year follow-up period. Among the trained classifiers, random forest demonstrated the best performance. For the prediction of 1-, 2-, 3-, 4-, and 5-year mortality, the areas under the receiver operating characteristic curves of the SEMMELWEIS-CRT score were 0.768 (95% CI: 0.674-0.861; P < 0.001), 0.793 (95% CI: 0.718-0.867; P < 0.001), 0.785 (95% CI: 0.711-0.859; P < 0.001), 0.776 (95% CI: 0.703-0.849; P < 0.001), and 0.803 (95% CI: 0.733-0.872; P < 0.001), respectively. The discriminative ability of our model was superior to other evaluated scores.ConclusionThe SEMMELWEIS-CRT score (available at semmelweiscrtscore.com) exhibited good discriminative capabilities for the prediction of all-cause death in CRT patients and outperformed the already existing risk scores. By capturing the non-linear association of predictors, the utilization of ML approaches may facilitate optimal candidate selection and prognostication of patients undergoing CRT implantation.
Project description:BackgroundMachine learning (ML) has shown promising results in all fields of medicine, including preventive cardiology. Hypertensive patients are at higher risk of mortality after coronary artery bypass graft (CABG) surgery; thus, we aimed to design and evaluate five ML models to predict 1-year mortality among hypertensive patients who underwent CABG.HyothesisML algorithms can significantly improve mortality prediction after CABG.MethodsTehran Heart Center's CABG data registry was used to extract several baseline and peri-procedural characteristics and mortality data. The best features were chosen using random forest (RF) feature selection algorithm. Five ML models were developed to predict 1-year mortality: logistic regression (LR), RF, artificial neural network (ANN), extreme gradient boosting (XGB), and naïve Bayes (NB). The area under the curve (AUC), sensitivity, and specificity were used to evaluate the models.ResultsAmong the 8,493 hypertensive patients who underwent CABG (mean age of 68.27 ± 9.27 years), 303 died in the first year. Eleven features were selected as the best predictors, among which total ventilation hours and ejection fraction were the leading ones. LR showed the best prediction ability with an AUC of 0.82, while the least AUC was for the NB model (0.79). Among the subgroups, the highest AUC for LR model was for two age range groups (50-59 and 80-89 years), overweight, diabetic, and smoker subgroups of hypertensive patients.ConclusionsAll ML models had excellent performance in predicting 1-year mortality among CABG hypertension patients, while LR was the best regarding AUC. These models can help clinicians assess the risk of mortality in specific subgroups at higher risk (such as hypertensive ones).
Project description:BackgroundThe impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection.MethodsThis international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation.FindingsThis analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28-2·40], p<0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65-3·22], p<0·0001), American Society of Anesthesiologists grades 3-5 versus grades 1-2 (2·35 [1·57-3·53], p<0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01-2·39], p=0·046), emergency versus elective surgery (1·67 [1·06-2·63], p=0·026), and major versus minor surgery (1·52 [1·01-2·31], p=0·047).InterpretationPostoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery.FundingNational Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research.
Project description:Associations between delirium and postoperative adverse events in cardiovascular surgery have been reported and the preoperative identification of high-risk patients of delirium is needed to implement focused interventions. We aimed to develop and validate machine learning models to predict post-cardiovascular surgery delirium. Patients aged ≥ 40 years who underwent cardiovascular surgery at a single hospital were prospectively enrolled. Preoperative and intraoperative factors were assessed. Each patient was evaluated for postoperative delirium 7 days after surgery. We developed machine learning models using the Bernoulli naive Bayes, Support vector machine, Random forest, Extra-trees, and XGBoost algorithms. Stratified fivefold cross-validation was performed for each developed model. Of the 87 patients, 24 (27.6%) developed postoperative delirium. Age, use of psychotropic drugs, cognitive function (Mini-Cog < 4), index of activities of daily living (Barthel Index < 100), history of stroke or cerebral hemorrhage, and eGFR (estimated glomerular filtration rate) < 60 were selected to develop delirium prediction models. The Extra-trees model had the best area under the receiver operating characteristic curve (0.76 [standard deviation 0.11]; sensitivity: 0.63; specificity: 0.78). XGBoost showed the highest sensitivity (AUROC, 0.75 [0.07]; sensitivity: 0.67; specificity: 0.79). Machine learning algorithms could predict post-cardiovascular delirium using preoperative data.Trial registration: UMIN-CTR (ID; UMIN000049390).
Project description:This study retrospectively investigated the effect of dexmedetomidine on outcomes of patients undergoing coronary artery bypass graft (CABG) surgery.Retrospective investigation.Patients from a single tertiary medical center.A total of 724 patients undergoing CABG surgery met the inclusion criteria and were categorized into 2 groups: 345 in the dexmedetomidine group (DEX) and 379 in the nondexmedetomidine group (Non-DEX).Perioperative dexmedetomidine was used as an intravenous infusion (0.24 to 0.6 µg/kg/hour) initiated after cardiopulmonary bypass and continued for less than 24 hours postoperatively in the intensive care unit.Major outcome measures of this study were in-hospital, 30-day and 1-year all-cause mortality, delirium and major adverse cardiocerebral events. Perioperative dexmedetomidine infusion was associated with significant reductions in in-hospital, 30-day, and 1-year mortalities, compared with the patients who did not received dexmedetomidine. In-hospital, 30-day, and 1-year mortalities were 1.5% and 4.0% (adjusted odds ratio [OR], 0.332; 95% CI, 0.155 to 0.708; p = 0.0044), 2.0% and 4.5% (adjusted OR, 0.487; 95% CI, 0.253 to 0.985; p = 0.0305), and 3.2% and 6.9% (adjusted OR 0.421; 95% CI, 0.247 to 0.718, p = 0.0015), respectively. Perioperative dexmedetomidine infusion was associated with a reduced risk of delirium from 7.9% to 4.6% (adjusted OR, 0.431; 95% CI, 0.265-0.701; p = 0.0007).Dexmedetomidine infusion during CABG surgery was more likely to achieve improved in-hospital, 30-day, and 1-year survival rates, and a significantly lower incidence of delirium.
Project description:Gene expression profiles were generated from 199 primary breast cancer patients. Samples 1-176 were used in another study, GEO Series GSE22820, and form the training data set in this study. Sample numbers 200-222 form a validation set. This data is used to model a machine learning classifier for Estrogen Receptor Status. RNA was isolated from 199 primary breast cancer patients. A machine learning classifier was built to predict ER status using only three gene features.
Project description:Molecular docking results of two training sets containing 866 and 8,696 compounds were used to train three different machine learning (ML) approaches. Neural network approaches according to Keras and TensorFlow libraries and the gradient boosted decision trees approach of XGBoost were used with DScribe's Smooth Overlap of Atomic Positions molecular descriptors. In addition, neural networks using the SchNetPack library and descriptors were used. The ML performance was tested on three different sets, including compounds for future organic synthesis. The final evaluation of the ML predicted docking scores was based on the ZINC in vivo set, from which 1,200 compounds were randomly selected with respect to their size. The results obtained showed a consistent ML prediction capability of docking scores, and even though compounds with more than 60 atoms were found slightly overestimated they remain valid for a subsequent evaluation of their drug repurposing suitability.