Project description:A label-free electrochemical biosensing approach as an appropriate analysis technique for SARS-CoV-2 spike protein (SARS-CoV-2 S-protein) was investigated to facilitate the diagnosis of coronavirus in real samples. It is crucial to construct diagnostic features that can rapidly identify infected individuals to limit the spread of the virus and assign treatment choices. Therefore, a novel and selective method using SiO2@UiO-66 and a label-free electrochemical immunoassay for rapidly detecting spike protein. The development of innovative approaches for direct viral detection employing simplified and ideally reagent-free assays is a pressing and difficult topic. The absence of speedy and effective ways to diagnose viral diseases especially SARS-CoV-2 on demand has worsened the issue of combating the COVID-19 pandemic. The developed electrode illustrated a wide dynamic range of 100.0 fg mL-1 to 10.0 ng mL-1 with low limit detection. Therefore, the as-fabricated electrochemical SARS-CoV-2 S-protein sensor suggests an appropriate perspective in the point-of-care system, within 5.0 min, in nasal samples with satisfactory recovery.
Project description:Nowadays, biosensor technologies which can detect various contaminants in water quickly and cost-effectively are in great demand. Herein, we report an integrated channel waveguide-based fluorescent immunosensor with the ability to detect a maximum of 32 contaminants rapidly and simultaneously. In particular, we use waveguide tapers to improve the efficiency of excitation and collection of fluorescent signals in the presence of fluorophore photobleaching in a solid surface bioassay. Under the optimized waveguide geometry, this is the first demonstration of using such a type of waveguide immunosensor for the detection of microcystin-LR (MC-LR) in lake water. The waveguide chip was activated by (3-Mercaptopropyl) trimethoxysilane/N-(4-maleimidobutyryloxy) succinimide (MTS/GMBS) for immobilization of BSA-MC-LR conjugate, which was confirmed to have uniform monolayer distribution by atomic force microscopy. All real lake samples, even those containing MC-LR in the sub-microgram per liter range (e.g. 0.5 μg/L), could be determined by the immunosensor with recovery rates between 84% and 108%, confirming its application potential in the measurement of MC-LR in real water samples.
Project description:This work reports on further development of an optical biosensor for the in vitro detection of mycotoxins (in particular, aflatoxin B1) using a highly sensitive planar waveguide transducer in combination with a highly specific aptamer bioreceptor. This sensor is built on a SiO2-Si3N4-SiO2 optical planar waveguide (OPW) operating as a polarization interferometer (PI), which detects a phase shift between p- and s-components of polarized light propagating through the waveguide caused by the molecular adsorption. The refractive index sensitivity (RIS) of the recently upgraded PI experimental setup has been improved and reached values of around 9600 rad per refractive index unity (RIU), the highest RIS values reported, which enables the detection of low molecular weight analytes such as mycotoxins in very low concentrations. The biosensing tests yielded remarkable results for the detection of aflatoxin B1 in a wide range of concentrations from 1 pg/mL to 1 μg/mL in direct assay with specific DNA-based aptamers. Graphical abstract Optical planar waveguide polarization interferometry biosensor for detection of aflatoxin B1 using specific aptamer.
Project description:There are no assays for detecting B. burgdorferi antigen in blood of infected Lyme disease individuals. Here, we provide proof-of-principle evidence that we can quantify B. burgdorferi antigen in spiked blood using a portable smartphone-based fluorescence microscope that measures immunoagglutination on a paper microfluidic chip. We targeted B. burgdorferi OspA to develop a working prototype and added examples of two antigens (OspC and VlsE) that have diagnostic value for discrimination of Lyme disease stage. Using an extensively validated monoclonal antibody to OspA (LA-2), detection of OspA antigen had a broad linear range up to 100 pg/mL in 1% blood and the limit of detection (LOD) was 100 fg/mL (= 10 pg/mL in undiluted blood), which was 1000 times lower than our target of 10 ng/mL. Analysis of the two other targets was done using polyclonal and monoclonal antibodies. OspC antigen was detected at LOD 100 pg/mL (= 10 ng/mL of undiluted blood) and VlsE antigen was detected at LOD 1-10 pg/mL (= 0.1-1 ng/mL of undiluted blood). The method is accurate and was performed in 20 min from sample to answer. When optimized for detecting several B. burgdorferi antigens, this assay may differentiate active from past infections and facilitate diagnosis of Lyme disease in the initial weeks of infection, when antibody presence is typically below the threshold to be detected by serologic methods.
Project description:Digoxin is a cardiac glycosylated steroid-like drug with a positive inotropic effect and has been widely used in treating congestive heart failure, atrial fibrillation, atrial flutter, and other heart diseases. Digoxin is also a dangerous drug, which can cause drug poisoning at a low blood drug concentration (2.73-3.9 nmol/L, i.e., 2.14-3.05 ng/mL). Therefore, the timely detection of a patient's blood drug concentration plays a significant role in controlling blood drug concentration, reducing the occurrence of drug poisoning events, and maximizing the role of drug therapy. In this study, a DNA vector for the expression of the antidigoxin antibody Fab fragment was constructed. With the vector, Fab was expressed in E. coli and purified, and 1.2 mg of antibodies was obtained from 100 mL of culture. An immunofluorescent sensor based on the mechanism of photoinduced electron transfer was constructed by labeling additional cysteines in the heavy chain variable region and light chain variable region of the antibody Fab fragment with fluorescent dyes. The assay for digoxin with the immunosensor could be finished within 5 min with a limit of detection of 0.023 ng/mL, a detectable range of 0.023 ng/mL to 100 μg/mL, and an EC50 of 0.256 ng/mL. A new approach for the rapid detection of digoxin was developed and will contribulte to therapeutic drug monitoring.
Project description:In this study, we have first developed a rapid and sensitive strip immunosensor based on two heterogeneously-sized gold nanoparticles (Au NPs) probes for the detection of trace lead ions in drinking water. The sensitivity was 4-fold higher than that of the conventional LFA under the optimized conditions. The visual limit of detection (LOD) of the amplified method for qualitative detection lead ions was 2 ng/mL and the LOD for semi-quantitative detection could go down to 0.19 ng/mL using a scanning reader. The method suffered from no interference from other metal ions and could be used to detect trace lead ions in drinking water without sample enrichment. The recovery of the test samples ranged from 96% to 103%. As the detection method could be accomplished within 15 min, this method could be used as a potential tool for preliminary monitoring of lead contamination in drinking water.
Project description:A magnetoelastic (ME) biosensor for wireless detection of analytes in liquid is described. The ME biosensor was tested against human IgG in the range 0-20 ?g?mL-1. The sensing elements, anti-human IgG produced in goat, were immobilized on the surface of the sensor by using a recently introduced photochemical immobilization technique (PIT), whereas a new amplification protocol exploiting gold coated magnetic nanoparticles (core-shell nanoparticles) is demonstrated to significantly enhance the sensitivity. The gold nanoflowers grown on the magnetic core allowed us to tether anti-human IgG to the nanoparticles to exploit the sandwich detection scheme. The experimental results show that the 6 mm × 1 mm × 30 ?m ME biosensor with an amplification protocol that uses magnetic nanoparticles has a limit of detection (LOD) lower than 1 nM, works well in water, and has a rapid response time of few minutes. Therefore, the ME biosensor is very promising for real-time wireless detection of pathogens in liquids and for real life diagnostic purpose.
Project description:Sepsis, a life-threatening inflammatory response, demands economical, accurate, and rapid detection of biomarkers during the critical "golden hour" to reduce the patient mortality rate. Here, we demonstrate a cost-effective waveguide-enhanced nanogold-linked immunosorbent assay (WENLISA) based on nanoplasmonic waveguide biosensors for the rapid and sensitive detection of procalcitonin (PCT), a sepsis-related inflammatory biomarker. To enhance the limit of detection (LOD), we employed sandwich assays using immobilized capture antibodies and detection antibodies conjugated to gold nanoparticles to bind the target analyte, leading to a significant evanescent wave redistribution and strong nanoplasmonic absorption near the waveguide surface. Experimentally, we detected PCT for a wide linear response range of 0.1 pg/mL to 1 ng/mL with a record-low LOD of 48.7 fg/mL (3.74 fM) in 8 min. Furthermore, WENLISA has successfully identified PCT levels in the blood plasma of patients with sepsis and healthy individuals, offering a promising technology for early sepsis diagnosis.
Project description:Rapid and sensitive detection of human pathogens, such as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is an urgent and challenging task for clinical laboratories. Currently, the gold standard for SARS-CoV-2-specific RNA is based on quantitative RT-PCR (RT-qPCR), which relies on target amplification by Taq polymerase and uses a fluorescent resonance energy transfer-based hydrolysis probe. Although this method is accurate and specific, it is also time consuming. Here, a new molecular assay is described that combines a highly sensitive magnetic modulation biosensing (MMB) system, rapid thermal cycling, and a modified double-quenched hydrolysis probe. In vitro transcribed SARS-CoV-2 RNA targets spiked in PCR-grade water, were used to show that the calculated limit of detection of the MMB-based molecular assay was 1.6 copies per reaction. Testing 309 RNA extracts from 170 confirmed RT-qPCR SARS-CoV-2-negative individuals (30 of whom were positive for other respiratory viruses) and 139 RT-qPCR SARS-CoV-2-positive patients (CT ≤ 42) resulted in 97.8% sensitivity, 100% specificity, and 0% cross-reactivity. The total turnaround time of the MMB-based assay is 30 minutes, which is three to four times faster than a standard RT-qPCR. By adjusting the primers and the probe set, the platform can be easily adapted to detect most of the pathogens that are currently being diagnosed by RT-qPCR.
Project description:A novel strategy is reported for highly sensitive, rapid, and selective detection of nuclear matrix protein NMP22 using two-color quantum dots based on fluorescence resonance energy transfer (FRET). Quantum dots (QDs) are highly advantageous for biological imaging and analysis, particularly when combined with (FRET) properties of semiconductor quantum dot (QDs) are ideal for biological analysis to improve sensitivity and accuracy. In this FRET system narrowly dispersed green emitting quantum dot CdTe core is used as a donor and labelled by monoclonal (mAb) antibody, while orange emitting quantum dot CdTe/CdS core shell is used as an accepter and labelled by polyclonal (pAb) antibody. The quantum dots are labelled by antibodies using EDC/NHS as crosslinking agent. Bovine serum albumin (BSA) solution was added to block nonspecific binding sites. The fluorescence intensity of QDs accepter decreased linearly with the increasing concentrations of NMP22 from 2-22 pg mL-1 due to FRET system and fluoroimmunoassay reaction. This method has good regression coefficient (R 2 = 0.998) and detection limit was 0.05 pg mL-1. The proposed FRET-based immunosensor provides a quick, simple and sensitive immunoassay tool for protein detection, and can be considered as a promising approach for clinical applications. The proposed FRET-based immunosensor provides a quick, simple and sensitive immunoassay tool for protein detection, and can be considered as a promising approach for clinical applications.