Unknown

Dataset Information

0

Seeing Keratinocyte Proteins through the Looking Glass of Intrinsic Disorder.


ABSTRACT: Epidermal keratinocyte proteins include many with an eccentric amino acid content (compositional bias), atypical ultrastructural fate (built-in protease sensitivity), or assembly visible at the light microscope level (cytoplasmic granules). However, when considered through the looking glass of intrinsic disorder (ID), these apparent oddities seem quite expected. Keratinocyte proteins with highly repetitive motifs are of low complexity but high adaptation, providing polymers (e.g., profilaggrin) for proteolysis into bioactive derivatives, or monomers (e.g., loricrin) repeatedly cross-linked to self and other proteins to shield underlying tissue. Keratohyalin granules developing from liquid-liquid phase separation (LLPS) show that unique biomolecular condensates (BMC) and proteinaceous membraneless organelles (PMLO) occur in these highly customized cells. We conducted bioinformatic and in silico assessments of representative keratinocyte differentiation-dependent proteins. This was conducted in the context of them having demonstrated potential ID with the prospect of that characteristic driving formation of distinctive keratinocyte structures. Intriguingly, while ID is characteristic of many of these proteins, it does not appear to guarantee LLPS, nor is it required for incorporation into certain keratinocyte protein condensates. Further examination of keratinocyte-specific proteins will provide variations in the theme of PMLO, possibly recognizing new BMC for advancements in understanding intrinsically disordered proteins as reflected by keratinocyte biology.

SUBMITTER: Shamilov R 

PROVIDER: S-EPMC8348711 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7442716 | biostudies-literature
| S-EPMC4296901 | biostudies-literature
| S-EPMC2781462 | biostudies-literature
| S-EPMC9955065 | biostudies-literature
| S-EPMC5314879 | biostudies-literature
| S-EPMC8276010 | biostudies-literature
| S-EPMC3625736 | biostudies-literature
| S-EPMC5787451 | biostudies-literature
| S-EPMC9574089 | biostudies-literature
| S-EPMC4794765 | biostudies-literature