Ontology highlight
ABSTRACT: Background
Classification of true progression from nonprogression (eg, radiation-necrosis) after stereotactic radiotherapy/radiosurgery of brain metastasis is known to be a challenging diagnostic task on conventional magnetic resonance imaging (MRI). The scope and status of research using artificial intelligence (AI) on classifying true progression are yet unknown.Methods
We performed a systematic literature search of MEDLINE and EMBASE databases to identify studies that investigated the performance of AI-assisted MRI in classifying true progression after stereotactic radiotherapy/radiosurgery of brain metastasis, published before November 11, 2020. Pooled sensitivity and specificity were calculated using bivariate random-effects modeling. Meta-regression was performed for the identification of factors contributing to the heterogeneity among the studies. We assessed the quality of the studies using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria and a modified version of the radiomics quality score (RQS).Results
Seven studies were included, with a total of 485 patients and 907 tumors. The pooled sensitivity and specificity were 77% (95% CI, 70-83%) and 74% (64-82%), respectively. All 7 studies used radiomics, and none used deep learning. Several covariates including the proportion of lung cancer as the primary site, MR field strength, and radiomics segmentation slice showed a statistically significant association with the heterogeneity. Study quality was overall favorable in terms of the QUADAS-2 criteria, but not in terms of the RQS.Conclusion
The diagnostic performance of AI-assisted MRI seems yet inadequate to be used reliably in clinical practice. Future studies with improved methodologies and a larger training set are needed.
SUBMITTER: Kim HY
PROVIDER: S-EPMC8350153 | biostudies-literature |
REPOSITORIES: biostudies-literature