Project description:Gastric cancer (GC) is one of the most common malignant tumors with high mortality. Accurate diagnosis and treatment decisions for GC rely heavily on human experts' careful judgments on medical images. However, the improvement of the accuracy is hindered by imaging conditions, limited experience, objective criteria, and inter-observer discrepancies. Recently, the developments of machine learning, especially deep-learning algorithms, have been facilitating computers to extract more information from data automatically. Researchers are exploring the far-reaching applications of artificial intelligence (AI) in various clinical practices, including GC. Herein, we aim to provide a broad framework to summarize current research on AI in GC. In the screening of GC, AI can identify precancerous diseases and assist in early cancer detection with endoscopic examination and pathological confirmation. In the diagnosis of GC, AI can support tumor-node-metastasis (TNM) staging and subtype classification. For treatment decisions, AI can help with surgical margin determination and prognosis prediction. Meanwhile, current approaches are challenged by data scarcity and poor interpretability. To tackle these problems, more regulated data, unified processing procedures, and advanced algorithms are urgently needed to build more accurate and robust AI models for GC.
Project description:BackgroundDetailed understanding of pre-, early and late neoplastic states in gastric cancer helps develop better models of risk of progression to gastric cancers (GCs) and medical treatment to intercept such progression.MethodsWe built a Boolean implication network of gastric cancer and deployed machine learning algorithms to develop predictive models of known pre-neoplastic states, e.g., atrophic gastritis, intestinal metaplasia (IM) and low- to high-grade intestinal neoplasia (L/HGIN), and GC. Our approach exploits the presence of asymmetric Boolean implication relationships that are likely to be invariant across almost all gastric cancer datasets. Invariant asymmetric Boolean implication relationships can decipher fundamental time-series underlying the biological data. Pursuing this method, we developed a healthy mucosa → GC continuum model based on this approach.ResultsOur model performed better against publicly available models for distinguishing healthy versus GC samples. Although not trained on IM and L/HGIN datasets, the model could identify the risk of progression to GC via the metaplasia → dysplasia → neoplasia cascade in patient samples. The model could rank all publicly available mouse models for their ability to best recapitulate the gene expression patterns during human GC initiation and progression.ConclusionsA Boolean implication network enabled the identification of hitherto undefined continuum states during GC initiation. The developed model could now serve as a starting point for rationalizing candidate therapeutic targets to intercept GC progression.
Project description:Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative motor neuron disease. Although an early diagnosis is crucial to provide adequate care and improve survival, patients with ALS experience a significant diagnostic delay. This study aimed to use real-world data to describe the clinical profile and timing between symptom onset, diagnosis, and relevant outcomes in ALS. Retrospective and multicenter study in 5 representative hospitals and Primary Care services in the SESCAM Healthcare Network (Castilla-La Mancha, Spain). Using Natural Language Processing (NLP), the clinical information in electronic health records of all patients with ALS was extracted between January 2014 and December 2018. From a source population of all individuals attended in the participating hospitals, 250 ALS patients were identified (61.6% male, mean age 64.7 years). Of these, 64% had spinal and 36% bulbar ALS. For most defining symptoms, including dyspnea, dysarthria, dysphagia and fasciculations, the overall diagnostic delay from symptom onset was 11 (6-18) months. Prior to diagnosis, only 38.8% of patients had visited the neurologist. In a median post-diagnosis follow-up of 25 months, 52% underwent gastrostomy, 64% non-invasive ventilation, 16.4% tracheostomy, and 87.6% riluzole treatment; these were more commonly reported (all Ps < 0.05) and showed greater probability of occurrence (all Ps < 0.03) in bulbar ALS. Our results highlight the diagnostic delay in ALS and revealed differences in the clinical characteristics and occurrence of major disease-specific events across ALS subtypes. NLP holds great promise for its application in the wider context of rare neurological diseases.
Project description:Gastric cancer (GC) is one of the most newly diagnosed cancers and the fifth leading cause of death globally. Identification of early gastric cancer (EGC) can ensure quick treatment and reduce significant mortality. Therefore, we aimed to conduct a systematic review with a meta-analysis of current literature to evaluate the performance of the CNN model in detecting EGC. We conducted a systematic search in the online databases (e.g., PubMed, Embase, and Web of Science) for all relevant original studies on the subject of CNN in EGC published between 1 January 2010, and 26 March 2021. The Quality Assessment of Diagnostic Accuracy Studies-2 was used to assess the risk of bias. Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. Moreover, a summary receiver operating characteristic curve (SROC) was plotted. Of the 171 studies retrieved, 15 studies met inclusion criteria. The application of the CNN model in the diagnosis of EGC achieved a SROC of 0.95, with corresponding sensitivity of 0.89 (0.88-0.89), and specificity of 0.89 (0.89-0.90). Pooled sensitivity and specificity for experts endoscopists were 0.77 (0.76-0.78), and 0.92 (0.91-0.93), respectively. However, the overall SROC for the CNN model and expert endoscopists was 0.95 and 0.90. The findings of this comprehensive study show that CNN model exhibited comparable performance to endoscopists in the diagnosis of EGC using digital endoscopy images. Given its scalability, the CNN model could enhance the performance of endoscopists to correctly stratify EGC patients and reduce work load.
Project description:Adenoid hypertrophy may lead to pediatric obstructive sleep apnea and mouth breathing. The routine screening of adenoid hypertrophy in dental practice is helpful for preventing relevant craniofacial and systemic consequences. The purpose of this study was to develop an automated assessment tool for adenoid hypertrophy based on artificial intelligence. A clinical dataset containing 581 lateral cephalograms was used to train the convolutional neural network (CNN). According to Fujioka's method for adenoid hypertrophy assessment, the regions of interest were defined with four keypoint landmarks. The adenoid ratio based on the four landmarks was used for adenoid hypertrophy assessment. Another dataset consisting of 160 patients' lateral cephalograms were used for evaluating the performance of the network. Diagnostic performance was evaluated with statistical analysis. The developed system exhibited high sensitivity (0.906, 95% confidence interval [CI]: 0.750-0.980), specificity (0.938, 95% CI: 0.881-0.973) and accuracy (0.919, 95% CI: 0.877-0.961) for adenoid hypertrophy assessment. The area under the receiver operating characteristic curve was 0.987 (95% CI: 0.974-1.000). These results indicated the proposed assessment system is able to assess AH accurately. The CNN-incorporated system showed high accuracy and stability in the detection of adenoid hypertrophy from children' lateral cephalograms, implying the feasibility of automated adenoid hypertrophy screening utilizing a deep neural network model.
Project description:We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.
Project description:Aim Although MRI has a substantial role in directing treatment decisions for locally advanced rectal cancer, precise interpretation of the findings is not necessarily available at every institution. In this study, we aimed to develop artificial intelligence-based software for the segmentation of rectal cancer that can be used for staging to optimize treatment strategy and for preoperative surgical simulation. Method Images from a total of 201 patients who underwent preoperative MRI were analyzed for training data. The resected specimen was processed in a circular shape in 103 cases. Using these datasets, ground-truth labels were prepared by annotating MR images with ground-truth segmentation labels of tumor area based on pathologically confirmed lesions. In addition, the areas of rectum and mesorectum were also labeled. An automatic segmentation algorithm was developed using a U-net deep neural network. Results The developed algorithm could estimate the area of the tumor, rectum, and mesorectum. The Dice similarity coefficients between manual and automatic segmentation were 0.727, 0.930, and 0.917 for tumor, rectum, and mesorectum, respectively. The T2/T3 diagnostic sensitivity, specificity, and overall accuracy were 0.773, 0.768, and 0.771, respectively. Conclusion This algorithm can provide objective analysis of MR images at any institution, and aid risk stratification in rectal cancer and the tailoring of individual treatments. Moreover, it can be used for surgical simulations.
Project description:ObjectivesCryptococcosis remains a severe global health concern, underscoring the urgent need for rapid and reliable diagnostic solutions. Point-of-care tests (POCTs), such as the cryptococcal antigen semi-quantitative (CrAgSQ) lateral flow assay (LFA), offer promise in addressing this challenge. However, their subjective interpretation poses a limitation. Our objectives encompass the development and validation of a digital platform based on Artificial Intelligence (AI), assessing its semi-quantitative LFA interpretation performance, and exploring its potential to quantify CrAg concentrations directly from LFA images.MethodsWe tested 53 cryptococcal antigen (CrAg) concentrations spanning from 0 to 5000 ng/ml. A total of 318 CrAgSQ LFAs were inoculated and systematically photographed twice, employing two distinct smartphones, resulting in a dataset of 1272 images. We developed an AI algorithm designed for the automated interpretation of CrAgSQ LFAs. Concurrently, we explored the relationship between quantified test line intensities and CrAg concentrations.ResultsOur algorithm surpasses visual reading in sensitivity, and shows fewer discrepancies (p < 0.0001). The system exhibited capability of predicting CrAg concentrations exclusively based on a photograph of the LFA (Pearson correlation coefficient of 0.85).ConclusionsThis technology's adaptability for various LFAs suggests broader applications. AI-driven interpretations have transformative potential, revolutionizing cryptococcosis diagnosis, offering standardized, reliable, and efficient POCT results.