Project description:Diabetic cardiomyopathy is a cascade of complex events leading to eventual failure of the heart and cardiac fibrosis being considered as one of its major causes. miR-133a is one of the most abundantly expressed microRNAs in the heart. We investigated the role of miR-133a during severe hyperglycaemia. And, our aim was to find out what role miR-133a plays during diabetes-induced cardiac fibrosis. We saw a drastic decrease in miR-133a expression in the hearts of streptozotocin-induced diabetic animals, as measured by RT-qPCR. This decrease was accompanied by an increase in the transcriptional co-activator EP300 mRNA and major markers of fibrosis [transforming growth factor-?1, connective tissue growth factor, fibronectin (FN1) and COL4A1]; in addition, focal cardiac fibrosis assessed by Masson's trichome stain was increased. Interestingly, in diabetic mice with cardiac-specific miR-133aa overexpression, cardiac fibrosis was significantly decreased, as observed by RT-qPCR and immunoblotting of COL4A1, ELISA for FN1 and microscopic examination. Furthermore, Cardiac miR-133a overexpression prevented ERK1/2 and SMAD-2 phosphorylation. These findings show that miR-133a could be a potential therapeutic target for diabetes-induced cardiac fibrosis and related cardiac dysfunction.
Project description:Cardiac hypertrophy initially serves as an adaptive response to physiological and pathological stimuli. Sustained hypertrophy progress to pathological cardiac hypertrophy, cardiac fibrosis and ultimately lead to heart failure, one of the leading medical causes of mortality worldwide. Intervention of pathological cardiac hypertrophy can effectively reduce the occurrence of heart failure. Abundant factors, such as adrenergic, angiotensin, and endothelin (ET-1) receptors, have been shown to participate in the regulation of pathological cardiac hypertrophy. Recently, an increasing number of studies have indicated that circRNA and circRNA-miRNA-mRNA network regulation is indispensable for the posttranscriptional regulation of mRNA in cardiac hypertrophy. In our study, the morphological, cardiac function and pathological changes during cardiac hypertrophy were investigated. RNA sequencing identified 93 circRNAs that were differentially expressed in the TAC_2w group, and 55 circRNAs in the TAC_4w group compared with the sham group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified several significant pathways, including hypertrophic cardiomyopathy, extracellular matrix (ECM)-receptor interaction and focal adhesion. Coexpression analyses were performed for differentially expressed circRNAs and differentially expressed mRNAs. Based on gene set enrichment analysis (GSEA), 8 circRNAs (mmu-Nfkb1_0001, mmu-Smad4_0007, mmu-Hecw2_0009, mmu-Itgbl1_0002, mmu-Lrrc2_0005, mmu-Cpeb3_0007, mmu-Ryr2_0040, and mmu-Rtn4_0001) involved in cardiac hypertrophy and cardiac fibrosis were identified. We validated some key circRNAs by qPCR. The crucial coexpression of circRNA-mRNA and its interaction with miRNA showed the possible mechanism of circRNAs in the process of cardiac dysfunction. Our results may provide promising targets for the treatment of pathological cardiac hypertrophy and fibrosis.
Project description:Cardiac fibrosis begins as an intrinsic response to injury or ageing that functions to preserve the tissue from further damage. Fibrosis results from activated cardiac myofibroblasts, which secrete extracellular matrix (ECM) proteins in an effort to replace damaged tissue; however, excessive ECM deposition leads to pathological fibrotic remodeling. At this extent, fibrosis gravely disturbs myocardial compliance, and ultimately leads to adverse outcomes like heart failure with heightened mortality. As such, understanding the complexity behind fibrotic remodeling has been a focal point of cardiac research in recent years. Resident cardiac fibroblasts and activated myofibroblasts have been proven integral to the fibrotic response; however, several findings point to additional cell types that may contribute to the development of pathological fibrosis. For one, leukocytes expand in number after injury and exhibit high plasticity, thus their distinct role(s) in cardiac fibrosis is an ongoing and controversial field of study. This review summarizes current findings, focusing on both direct and indirect leukocyte-mediated mechanisms of fibrosis, which may provide novel targeted strategies against fibrotic remodeling.
Project description:Cardiovascular diseases (CVDs) are the leading causes of death worldwide. CVD pathophysiology is often characterized by increased stiffening of the heart muscle due to fibrosis, thus resulting in diminished cardiac function. Fibrosis can be caused by increased oxidative stress and inflammation, which is strongly linked to lifestyle and environmental factors such as diet, smoking, hyperglycemia, and hypertension. These factors can affect gene expression through epigenetic modifications. Lysyl oxidase like 2 (LOXL2) is responsible for collagen and elastin cross-linking in the heart, and its dysregulation has been pathologically associated with increased fibrosis. Additionally, studies have shown that, LOXL2 expression can be regulated by DNA methylation and histone modification. However, there is a paucity of data on LOXL2 regulation and its role in CVD. As such, this review aims to gain insight into the mechanisms by which LOXL2 is regulated in physiological conditions, as well as determine the downstream effectors responsible for CVD development.
Project description:Aminoguanidine (AG) inhibits advanced glycation end products (AGEs) and advanced oxidation protein products (AOPP) accumulated as a result of excessive oxidative stress in diabetes. However, the molecular mechanism by which AG reduces AGE-associated damage in diabetes is not well understood. Thus, we investigated whether AG supplementation mitigates oxidative-associated cardiac fibrosis in rats with type 2 diabetes mellitus (T2DM). Forty-five male Wistar rats were divided into three groups: Control, T2DM and T2DM+AG. Rats were fed with a high-fat, high-carbohydrate diet (HFCD) for 2 weeks and rendered diabetic using low-dose streptozotocin (STZ) (20 mg/kg), and one group was treated with AG (20 mg/kg) up to 25 weeks. In vitro experiments were performed in primary rat myofibroblasts to confirm the antioxidant and antifibrotic effects of AG and to determine if blocking the receptor for AGEs (RAGE) prevents the fibrogenic response in myofibroblasts. Diabetic rats exhibited an increase in cardiac fibrosis resulting from HFCD and STZ injections. By contrast, AG treatment significantly reduced cardiac fibrosis, ?-smooth muscle actin (?SMA) and oxidative-associated Nox4 and Nos2 mRNA expression. In vitro challenge of myofibroblasts with AG under T2DM conditions reduced intra- and extracellular collagen type I expression and Pdgfb, Tgf?1 and Col1a1 mRNAs, albeit with similar expression of Tnf? and Il6 mRNAs. This was accompanied by reduced phosphorylation of ERK1/2 and SMAD2/3 but not of AKT1/2/3 and STAT pathways. RAGE blockade further attenuated collagen type I expression in AG-treated myofibroblasts. Thus, AG reduces oxidative stress-associated cardiac fibrosis by reducing pERK1/2, pSMAD2/3 and collagen type I expression via AGE/RAGE signaling in T2DM.
Project description:Recent findings suggest that sleep might serve a role in emotional coping. However, most findings are based on subjective reports of sleep quality, while the relation with underlying sleep physiology is still largely unknown. In this study, the impact of an emotionally distressing experience on the EEG correlates of sleep was assessed. In addition, the association between sleep physiological parameters and the extent of emotional attenuation over sleep was determined. The experimental set up involved presentation of an emotionally neutral or distressing film fragment in the evening, followed by polysomnographic registration of undisturbed, whole-night sleep and assessment of emotional reactivity to film cues on the next evening. We found that emotional distress induced mild sleep deterioration, but also an increase in the proportion of slow wave sleep (SWS) and altered patterning of rapid eye movement (REM) sleep. Indeed, while REM sleep occurrence normally increases over the course of the night, emotional distress flattened this distribution and correlated with an increased number of REM periods. While sleep deterioration was negatively associated to emotional attenuation over sleep, the SWS response was positively related to such attenuation and may form part of a compensatory response to the stressor. Interestingly, trait-like SWS characteristics also correlated positively with the extent of emotion attenuation over sleep. The combined results provide strong evidence for an intimate reciprocal relation between sleep physiology and emotional processing. Moreover, individual differences in subjects' emotional and sleep responses suggest there may be a coupling of certain emotion and sleep traits into distinct emotional sleep types.
Project description:PURPOSE:Pathological cardiac remodeling, characterized by cardiac hypertrophy and fibrosis, is a pathological feature of many cardiac disorders that leads to heart failure and cardiac arrest. Vinpocetine, a derivative of the alkaloid vincamine, has been used for enhancing cerebral blood flow to treat cognitive impairment. However, its role in pathological cardiac remodeling remains unknown. The aim of this study is to examine the effect of vinpocetine on pathological cardiac remodeling induced by chronic stimulation with angiotensin II (Ang II). METHODS:Mice received Ang II infusion via osmotic pumps in the presence of vehicle or vinpocetine. Cardiac hypertrophy and fibrosis were assessed by morphological, histological, and biochemical analyses. Mechanistic studies were carried out in vitro with isolated mouse adult cardiac myocytes and fibroblasts. RESULTS:We showed that chronic Ang II infusion caused cardiac hypertrophy and fibrosis, which were all significantly attenuated by systemic administration of vinpocetine. In isolated adult mouse cardiomyocytes, vinpocetine suppressed Ang II-stimulated myocyte hypertrophic growth. In cultured cardiac fibroblasts, vinpocetine suppressed TGF?-induced fibroblast activation and matrix gene expression, consistent with its effect in attenuating cardiac fibrosis. The effects of vinpocetine on cardiac myocyte hypertrophy and fibroblast activation are likely mediated by targeting cyclic nucleotide phosphodiesterase 1 (PDE1). CONCLUSIONS:Our results reveal a novel protective effect of vinpocetine in attenuating pathological cardiac remodeling through suppressing cardiac myocyte hypertrophic growth and fibroblast activation and fibrotic gene expression. These studies may also shed light on developing novel therapeutic agents for antagonizing pathological cardiac remodeling.
Project description:Fibrosis is observed in nearly every form of myocardial disease1. Upon injury, cardiac fibroblasts in the heart begin to remodel the myocardium by depositing excess extracellular matrix, resulting in increased stiffness and reduced compliance of the tissue. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure2. However, clinical interventions and therapies that target fibrosis remain limited3. Here we demonstrate the efficacy of redirected T cell immunotherapy to specifically target pathological cardiac fibrosis in mice. We find that cardiac fibroblasts that express a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8+ T cells. Through expression analysis of the gene signatures of cardiac fibroblasts obtained from healthy and diseased human hearts, we identify an endogenous target of cardiac fibroblasts-fibroblast activation protein. Adoptive transfer of T cells that express a chimeric antigen receptor against fibroblast activation protein results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide proof-of-principle for the development of immunotherapeutic drugs for the treatment of cardiac disease.