Unknown

Dataset Information

0

High-sensitivity of initial SrO growth on the residual resistivity in epitaxial thin films of SrRuO[Formula: see text] on SrTiO[Formula: see text] (001).


ABSTRACT: The growth of SrRuO[Formula: see text] (SRO) thin film with high-crystallinity and low residual resistivity (RR) is essential to explore its intrinsic properties. Here, utilizing the adsorption-controlled growth technique, the growth condition of initial SrO layer on TiO[Formula: see text]-terminated SrTiO[Formula: see text] (STO) (001) substrate was found to be crucial for achieving a low RR in the resulting SRO film grown afterward. The optimized initial SrO layer shows a c(2 [Formula: see text] 2) superstructure that was characterized by electron diffraction, and a series of SRO films with different thicknesses (ts) were then grown. The resulting SRO films exhibit excellent crystallinity with orthorhombic-phase down to [Formula: see text] 4.3 nm, which was confirmed by high resolution X-ray measurements. From X-ray azimuthal scan across SRO orthorhombic (02 ± 1) reflections, we uncover four structural domains with a dominant domain of orthorhombic SRO [001] along cubic STO [010] direction. The dominant domain population depends on t, STO miscut angle ([Formula: see text]), and miscut direction ([Formula: see text]), giving a volume fraction of about 92 [Formula: see text] for [Formula: see text] 26.6 nm and [Formula: see text] (0.14[Formula: see text], 5[Formula: see text]). On the other hand, metallic and ferromagnetic properties were well preserved down to t [Formula: see text] 1.2 nm. Residual resistivity ratio (RRR = [Formula: see text]/[Formula: see text]) reduces from 77.1 for t [Formula: see text] 28.5 nm to 2.5 for t [Formula: see text] 1.2 nm, while [Formula: see text] increases from 2.5 [Formula: see text]cm for t [Formula: see text] 28.5 nm to 131.0 [Formula: see text]cm for t [Formula: see text] 1.2 nm. The ferromagnetic onset temperature ([Formula: see text]) of around 151 K remains nearly unchanged down to t [Formula: see text] 9.0 nm and decreases to 90 K for t [Formula: see text] 1.2 nm. Our finding thus provides a practical guideline to achieve high crystallinity and low RR in ultra-thin SRO films by simply adjusting the growth of initial SrO layer.

SUBMITTER: Kar U 

PROVIDER: S-EPMC8352924 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10394051 | biostudies-literature
| S-EPMC4410410 | biostudies-other
| S-EPMC8494935 | biostudies-literature
| S-EPMC8595440 | biostudies-literature
| S-EPMC9934301 | biostudies-literature
| S-EPMC8671446 | biostudies-literature
| S-EPMC7498615 | biostudies-literature
| S-EPMC4424041 | biostudies-other
| S-EPMC8184963 | biostudies-literature
| S-EPMC8571276 | biostudies-literature