Ontology highlight
ABSTRACT: Objectives
To develop and validate an artificial intelligence algorithm to decide on the necessity of dynamic contrast-enhanced sequences (DCE) in prostate MRI.Methods
This study was approved by the institutional review board and requirement for study-specific informed consent was waived. A convolutional neural network (CNN) was developed on 300 prostate MRI examinations. Consensus of two expert readers on the necessity of DCE acted as reference standard. The CNN was validated in a separate cohort of 100 prostate MRI examinations from the same vendor and 31 examinations from a different vendor. Sensitivity/specificity were calculated using ROC curve analysis and results were compared to decisions made by a radiology technician.Results
The CNN reached a sensitivity of 94.4% and specificity of 68.8% (AUC: 0.88) for the necessity of DCE, correctly assigning 44%/34% of patients to a biparametric/multiparametric protocol. In 2% of all patients, the CNN incorrectly decided on omitting DCE. With a technician reaching a sensitivity of 63.9% and specificity of 89.1%, the use of the CNN would allow for an increase in sensitivity of 30.5%. The CNN achieved an AUC of 0.73 in a set of examinations from a different vendor.Conclusions
The CNN would have correctly assigned 78% of patients to a biparametric or multiparametric protocol, with only 2% of all patients requiring re-examination to add DCE sequences. Integrating this CNN in clinical routine could render the requirement for on-table monitoring obsolete by performing contrast-enhanced MRI only when needed.
SUBMITTER: Hotker AM
PROVIDER: S-EPMC8353049 | biostudies-literature |
REPOSITORIES: biostudies-literature