Unknown

Dataset Information

0

Celastrol exerts a neuroprotective effect by directly binding to HMGB1 protein in cerebral ischemia-reperfusion.


ABSTRACT:

Background

Celastrol (cel) was one of the earliest isolated and identified chemical constituents of Tripterygium wilfordii Hook. f. Based on a cel probe (cel-p) that maintained the bioactivity of the parent compound, the targets of cel in cerebral ischemia-reperfusion (I/R) injury were comprehensively analyzed by a quantitative chemical proteomics method.

Methods

We constructed an oxygen-glucose deprivation (OGD) model in primary rat cortical neurons and a middle cerebral artery occlusion (MCAO) model in adult rats to detect the direct binding targets of cel in cerebral I/R. By combining various experimental methods, including tandem mass tag (TMT) labeling, mass spectrometry, and cellular thermal shift assay (CETSA), we revealed the targets to which cel directly bound to exert neuroprotective effects.

Results

We found that cel inhibited the proinflammatory activity of high mobility group protein 1 (HMGB1) by directly binding to it and then blocking the binding of HMGB1 to its inflammatory receptors in the microenvironment of ischemia and hypoxia. In addition, cel rescued neurons from OGD injury in vitro and decreased cerebral infarction in vivo by targeting HSP70 and NF-κB p65.

Conclusion

Cel exhibited neuroprotective and anti-inflammatory effects by targeting HSP70 and NF-κB p65 and directly binding to HMGB1 in cerebral I/R injury.

SUBMITTER: Liu DD 

PROVIDER: S-EPMC8353826 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5112296 | biostudies-literature
| S-EPMC6501157 | biostudies-literature
| S-EPMC5048094 | biostudies-other
| S-EPMC3966873 | biostudies-literature
| S-EPMC7062268 | biostudies-literature
| S-EPMC6006215 | biostudies-literature
| S-EPMC6334612 | biostudies-literature
| S-EPMC6029460 | biostudies-literature
| S-EPMC9213799 | biostudies-literature
2022-05-13 | GSE202659 | GEO