Unknown

Dataset Information

0

Prediction of radiation pneumonitis after definitive radiotherapy for locally advanced non-small cell lung cancer using multi-region radiomics analysis.


ABSTRACT: To predict grade ≥ 2 radiation pneumonitis (RP) in patients with locally advanced non-small cell lung cancer (NSCLC) using multi-region radiomics analysis. Data from 77 patients with NSCLC who underwent definitive radiotherapy between 2008 and 2018 were analyzed. Radiomic feature extraction from the whole lung (whole-lung radiomics analysis) and imaging- and dosimetric-based segmentation (multi-region radiomics analysis) were performed. Patients with RP grade ≥ 2 or < 2 were classified. Predictors were selected with least absolute shrinkage and selection operator logistic regression and the model was built with neural network classifiers. A total of 49,383 radiomics features per patient image were extracted from the radiotherapy planning computed tomography. We identified 4 features and 13 radiomics features in the whole-lung and multi-region radiomics analysis for classification, respectively. The accuracy and area under the curve (AUC) without the synthetic minority over-sampling technique (SMOTE) were 60.8%, and 0.62 for whole-lung and 80.1%, and 0.84 for multi-region radiomics analysis. These were improved 1.7% for whole-lung and 2.1% for multi-region radiomics analysis with the SMOTE. The developed multi-region radiomics analysis can help predict grade ≥ 2 RP. The radiomics features in the median- and high-dose regions, and the local intensity roughness and variation were important factors in predicting grade ≥ 2 RP.

SUBMITTER: Kawahara D 

PROVIDER: S-EPMC8355298 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7214615 | biostudies-literature
2016-04-21 | GSE65622 | GEO
| S-EPMC7897760 | biostudies-literature
| S-EPMC9437196 | biostudies-literature
| S-EPMC8066099 | biostudies-literature
| S-EPMC9367460 | biostudies-literature
| S-EPMC9943772 | biostudies-literature
| S-EPMC6606893 | biostudies-literature
| S-EPMC6124306 | biostudies-literature