Project description:Objective For patients with Gaucher disease (GD), a rare, inherited lysosomal storage disease, obtaining a definitive diagnosis is currently time-consuming and costly. A simplified screening method to measure the glucocerebrosidase (GBA) activity using dried blood spots (DBS) on filter paper has recently been developed. Using this newly developed screening method, we evaluated real-world GD screening in patients suspected of having GD. Methods This multicenter, cross-sectional, observational study with a diagnostic intervention component evaluated real-world screening in patients suspected of having GD based on their clinical symptoms and a platelet count <120,000/μL. The endpoint was the number of patients with low GBA activity determined using DBS. Results In 994 patients who underwent initial DBS screening, 77 had low GBA activity. The assay was not repeated in 1 patient who was diagnosed as having a high possibility of GD due to clinical symptoms, and a further 21 patients completed the study without undergoing the second assay. Of the remaining 55 patients who had 2 DBS assays performed, 11 had a low GBA activity in both assays. Overall, DBS screening identified 12 (1.2%) patients with a low GBA activity, a proportion consistent with prior screening studies. Conclusion These results suggest that the simplified DBS method was less burdensome to patients, was easily utilized by many physicians, and could be a useful first-tier screening assay for GD prior to initiating burdensome genetic testing.
Project description:Able to seqence microRNA from 2 x 6 mm dired blood spot chads from the BIBINS study. Samples are from newborns with moderate-severe HIE undergoing therapeutic hypothermia at around 16-24 h post insult, mild HIE without therapeutic hypothermia, and umbilical cord blodd from normal pregnancies.
Project description:The main purpose of the study is to compare the acceptance and viability of three strategies aimed to screen hepatitis C virus (HCV) infection in a birth cohort by: a) invitation letter offering HCV screening with dried blood spot (DBS) testing at the primary care center, b) invitation letter offering both HCV and colorectal cancer (CCR) screening with faecal occult test (FOT) at the primary care center, and c) invitation letter offering self-collected screening at home for HCV and CCR.
Project description:BACKGROUND:Hepatoblastoma screening in the Beckwith?Wiedemann spectrum (BWSp) is currently based on measuring a specific serum marker alpha-fetoprotein (?FP) every three months until the fourth birthday. Frequent blood draws can be a burden for patients and their families. METHODS:We have developed a less invasive alternative testing method based on measuring ?FPs from dried blood spots (DBS). The method was validated with 259 simultaneous plasma and DBS ?FP measurements in 171 children (132 controls and 39 patients with BWSp). RESULTS:The DBS and plasma measurements overlapped across the wide range of ?FP concentrations independent of patient age (p < 0.0001), demonstrating the utility of this method for longitudinal monitoring. Occasional differences between measurements by the two techniques fell within standard laboratory error and would not alter clinical management. CONCLUSIONS:This novel method shows consistent overlap with the traditional blood draws, thereby demonstrating its utility for hepatoblastoma screening in this setting and alleviating the burden of frequent blood draws. This also may help increase patient compliance and reduce costs of health care screening. The DBS-based method for the measurement of cancer biomarkers may also be applied to several other chronic diseases with increased risks of ?FP-producing liver tumors.
Project description:Over the past few years, dried blood spot (DBS) technology has become a convenient tool in both qualitative and quantitative biological analysis. DBS technology consists of a membrane carrier (MC) on the surface of which a biomaterial sample becomes absorbed. Modern analytical, immunological or genomic methods can be employed for analysis after drying the sample. DBS has been described as the most appropriate method for biomaterial sampling due to specific associated inherent advantages, including the small volumes of biomaterials required, the absence of a need for special conditions for samples' storage and transportation, improved stability of analytes and reduced risk of infection resulting from contaminated samples. This review illustrates information on the current state of DBS technology, which can be useful and helpful for biomedical researchers. The prospects of using this technology to assess the metabolomic profile, assessment, diagnosis of communicable diseases are demonstrated.
Project description:An important motivation for the construction of biobanks is to discover biomarkers that identify diseases at early, potentially curable stages. This will require biobanks from large numbers of individuals, preferably sampled repeatedly, where the samples are collected and stored under conditions that preserve potential biomarkers. Dried blood samples are attractive for biobanking because of the ease and low cost of collection and storage. Here we have investigated their suitability for protein measurements. Ninety-two proteins with relevance for oncology were analyzed using multiplex proximity extension assays (PEA) in dried blood spots collected on paper and stored for up to 30 years at either +4 °C or -24 °C.Our main findings were that (1) the act of drying only slightly influenced detection of blood proteins (average correlation of 0.970), and in a reproducible manner (correlation of 0.999), (2) detection of some proteins was not significantly affected by storage over the full range of three decades (34 and 76% of the analyzed proteins at +4 °C and -24 °C, respectively), whereas levels of others decreased slowly during storage with half-lives in the range of 10 to 50 years, and (3) detectability of proteins was less affected in dried samples stored at -24 °C compared with at +4 °C, as the median protein abundance had decreased to 80 and 93% of starting levels after 10 years of storage at +4 °C or -24 °C, respectively. The results of our study are encouraging as they suggest an inexpensive means to collect large numbers of blood samples, even by the donors themselves, and to transport, and store biobanked samples as spots of whole blood dried on paper. Combined with emerging means to measure hundreds or thousands of protein, such biobanks could prove of great medical value by greatly enhancing discovery as well as routine analysis of blood biomarkers.
Project description:In newborn screening, samples suspected for congenital adrenal hyperplasia (CAH), a potentially lethal inborn error of steroid biosynthesis, need to be confirmed using liquid chromatography-tandem mass spectrometry. Daily quality controls (QCs) for the 2nd-tier CAH assay are not commercially available and are therefore generally prepared within the laboratory. For the first time, we aimed to compare five different QC preparation approaches used in routine diagnostics for CAH on the concentrations of cortisol, 21-deoxycortisol, 11-deoxycortisol, 4-androstenedione and 17-hydroxyprogesterone in dried blood spots. The techniques from Prep1 to Prep5 were tested at two analyte concentrations by spiking aliquots of a steroid-depleted blood, derived from washed erythrocyte suspension and steroid-depleted serum. The preparation processes differed in the sequence of the preparation steps and whether freeze-thaw cycles were used to facilitate blood homogeneity. The five types of dried blood spot QCs were assayed and quantitated in duplicate on five different days using a single calibration row per day. Inter-assay variations less than 15% and concentrations within ±15% of the nominal values were considered acceptable. Results obtained by means of the four dried blood spot QC preparation techniques (Prep1, Prep2, Prep4 and Prep5) were statistically similar and remained within the ±15% ranges in terms of both reproducibility and nominal values. However, concentration results for Prep3 (spiking prior to three freeze-thaw cycles) were significantly lower than the nominal values in this setting, with differences exceeding the ±15% range in many cases despite acceptable inter-assay variations. These findings have implications for the in-house preparation of QC samples in laboratory developed tests for CAH, including 2nd-tier assays in newborn screening.
Project description:Comparison of transcript abundance estimates derived from DBS vs saliva vs gold standard peripheral blood mononuclear cell (PBMC) samples.
Project description:ObjectivesThe quality of blood values analyzed from survey-collected dried blood spot (DBS) samples is affected by fieldwork conditions, particularly spot size. We offer an image-based algorithm that accurately measures the area of field-collected DBS and we investigate the impact of spot size on the analyzed blood marker values.MethodsSHARE, a pan-European study, collected 24 000 DBS samples in 12 countries in its sixth wave. Our new algorithm uses photographs of the DBS samples to calculate the number of pixels of the blood-covered area to measure the spot sizes accurately. We ran regression models to examine the association of spot size and seven DBS analytes. We then compared the application of our new spot-size measures to common spot-size estimation.ResultsUsing automated spot-size measurement, we found that spot size has a significant effect on all markers. Smaller spots are associated with lower measured levels, except for HbA1c, for which we observe a negative effect. Our precisely measured spot sizes explain substantially more variance of DBS analytes compared to commonly used spot-size estimation.ConclusionThe new algorithm accurately measures the size of field-collected DBS in an automated way. This methodology can be applied to surveys even with very large numbers of observations. The measured spot sizes improve the accuracy of conversion formulae that translate blood marker values derived from DBS into venous blood values. The significance of the spot-size effects on biomarkers in DBS should also incentivize the improvement of fieldwork training and monitoring.