Project description:OBJECTIVE:This study was performed to further identify the previously uncharacterized human coronavirus 229E (hCoV-229E) and human coronavirus OC43 (hCoV-OC43) in Thailand by using the RT-PCR technique. In addition, we performed this study in order to delineate the prevalence, the potential clinical impacts and evaluation of the genetic characterization of this pathogen in young children who presented with acute lower respiratory tract infections (ALRI). METHODS:We obtained nasopharyngeal secretions (NPs) from 226 children <5 years of age who were either attending the outpatient department or hospitalized with ALRI from March 2002 to July 2003. All clinical, laboratory, RT-PCR, direct sequencing and phylogenetic analysis data were collected and analyzed. RESULTS:Of the 226 NPs samples from infants and young children presented with ALRI, 8 (3.54%) were positive for hCoV-229E, 2 (0.88%) were positive for hCoV-OC43, and 1 (0.44%) had co-infection. The following clinical presentations were noted: fever (100%), rhinitis (44%), acute bronchiolitis (44%), viral pneumonia (33%), viral pneumonia triggering asthma exacerbation (11%) as well as viral pneumonia causing BPD exacerbation (11%). All positive samples were subjected to direct sequencing. The amino acid sequences had 82-99% similarity to previous sequences stored in the GenBank database. CONCLUSION:The molecular technique we applied to detect human coronavirus appears justified as a valuable diagnostic approach to elucidate the prevalence, cause and clinical implications of ALRI among infants and young children.
Project description:Analysis of transcriptional profiles in whole blood from children < 2 years of age (and healthy matched controls) with RSV, rhinovirus and influenza infection. The hypothesis tested is that transcriptional profile heterogeneity will reflect patient clinical heterogeneity and that RSV infection induces a distinct host response compared with influenza and rhinovirus infection Total RNA extracted from whole blood (lysed in Tempus tubes) drawn from individual pediatric patients with acute RSV, influenza and Rhinovirus lower respiratory tract infection. A total of 241 samples are analyzed: 135 with acute RSV LRTI, 30 with Rhinovirus LRTI, 16 with influenza LRTI, 39 age-sex matched healthy controls and 21 samples obtained one month after the acute hospitalization in children with RSV. Samples GSM1226237-GSM1226272, which were hybridized to Platform GPL10558, were normalized separately from the other Samples in this Series, which were hybridized to Platform GPL6884. 'GSE38900_non-normalized_GSM1226237-GSM1226272.txt.gz' includes the non-normalized data for Samples GSM1226237-GSM1226272; 'GSE38900_non-normalized.txt.gz' includes the non-normalized data for the other Samples.
Project description:BackgroundMolecular diagnostics enable sensitive detection of respiratory viruses, but their clinical significance remains unclear in pediatric lower respiratory tract infection (LRTI). We aimed to determine whether viral coinfections increased life-threatening disease in a large cohort.MethodsMolecular testing was performed for respiratory viruses in nasopharyngeal aspirates collected from children aged <5 years within 24 hours of hospital admission during sentinel surveillance for severe acute respiratory illness (SARI) hospitalization conducted in South Africa during February 2009-December 2013. The primary outcome was life-threatening disease, defined as mechanical ventilation, intensive care unit admission, or death.ResultsOf 2322 HIV-uninfected children with respiratory syncytial virus (RSV)-associated LRTI, 1330 (57.3%) had RSV monoinfection, 38 (1.6%) had life-threatening disease, 575 (24.8%) had rhinovirus, 347 (14.9%) had adenovirus (ADV), and 30 (1.3%) had influenza virus. RSV and any other viral coinfection was not associated with severe disease, ADV coinfection had increased odds of life-threatening disease (adjusted OR, 3.4; 95% CI, 1.6-7.2; P = .001), and influenza coinfection had increased odds of life-threatening disease and prolonged length of stay (adjusted OR, 2.1; 95% CI, 1.0-4.5; P = .05) compared with RSV monoinfection.ConclusionsRSV coinfection with any respiratory virus is not associated with more severe disease when compared to RSV alone in this study. However, increased life-threatening disease in RSV-ADV and RSV-influenza coinfection warrants further study.
Project description:BACKGROUND. Lower respiratory tract infection (LRTI) is a leading cause of death in children worldwide. LRTI diagnosis is challenging since non-infectious respiratory illnesses appear clinically similar and existing microbiologic tests are often falsely negative or detect incidentally-carried microbes common in children. These challenges result in antimicrobial overuse and adverse patient outcomes. Lower airway metagenomics has the potential to detect host and microbial signatures of LRTI. Whether it can be applied at scale and in a pediatric population to enable improved diagnosis and precision treatment remains unclear. METHODS. We used tracheal aspirate RNA-sequencing to profile host gene expression and respiratory microbiota in 261 children with acute respiratory failure. We developed a random forest gene expression classifier for LRTI by training on patients with an established diagnosis of LRTI (n=117) or of non-infectious respiratory failure (n=50). We then developed a classifier that integrates the: i) host LRTI probability, ii) abundance of respiratory viruses, and iii) dominance in the lung microbiome of bacteria/fungi considered pathogenic by a rules-based algorithm. RESULTS. The host classifier achieved a median AUC of 0.967 by 5-fold cross-validation, driven by activation markers of T cells, alveolar macrophages and the interferon response. The integrated classifier achieved a median AUC of 0.986 and significantly increased the confidence of patient classifications. When applied to patients with an uncertain diagnosis (n=94), the integrated classifier indicated LRTI in 52% of cases and nominated likely causal pathogens in 98% of those. CONCLUSIONS. Lower airway metagenomics enables accurate LRTI diagnosis and pathogen identification in a heterogeneous cohort of critically ill children through integration of host, pathogen, and microbiome features.
Project description:Severe lower respiratory tract infection (LRTI) in infants caused by respiratory syncytial virus (RSV) has been associated with later pneumonia hospitalization among children. To determine risk for pneumonia after RSV hospitalization in infancy, we conducted a retrospective cohort analysis of 2,813 infants admitted to a hospital in Kenya and identified readmissions for pneumonia among this group during early childhood (<60 months of age). Incidence of readmission for pneumonia was higher for children whose first admission as infants was for LRTI and who were <3 months of age than for children who were first admitted as infants for non-LRTI, irrespective of RSV status. Incidence of readmission for pneumonia with wheeze was higher for children whose first admission involved RSV compared with those who had non-RSV LRTI. Excess pneumonia risk persisted for 2 years after the initial hospitalization. Close postdischarge follow-up of infants with LRTI, with or without RSV, could help prevent severe pneumonia later in childhood.
Project description:Analysis of transcriptional profiles in whole blood from children < 2 years of age (and healthy matched controls) with RSV, rhinovirus and influenza infection. The hypothesis tested is that transcriptional profile heterogeneity will reflect patient clinical heterogeneity and that RSV infection induces a distinct host response compared with influenza and rhinovirus infection
Project description:BACKGROUNDLower respiratory tract infection (LRTI) is a leading cause of death in children worldwide. LRTI diagnosis is challenging because noninfectious respiratory illnesses appear clinically similar and because existing microbiologic tests are often falsely negative or detect incidentally carried microbes, resulting in antimicrobial overuse and adverse outcomes. Lower airway metagenomics has the potential to detect host and microbial signatures of LRTI. Whether it can be applied at scale and in a pediatric population to enable improved diagnosis and treatment remains unclear.METHODSWe used tracheal aspirate RNA-Seq to profile host gene expression and respiratory microbiota in 261 children with acute respiratory failure. We developed a gene expression classifier for LRTI by training on patients with an established diagnosis of LRTI (n = 117) or of noninfectious respiratory failure (n = 50). We then developed a classifier that integrates the host LRTI probability, abundance of respiratory viruses, and dominance in the lung microbiome of bacteria/fungi considered pathogenic by a rules-based algorithm.RESULTSThe host classifier achieved a median AUC of 0.967 by cross-validation, driven by activation markers of T cells, alveolar macrophages, and the interferon response. The integrated classifier achieved a median AUC of 0.986 and increased the confidence of patient classifications. When applied to patients with an uncertain diagnosis (n = 94), the integrated classifier indicated LRTI in 52% of cases and nominated likely causal pathogens in 98% of those.CONCLUSIONLower airway metagenomics enables accurate LRTI diagnosis and pathogen identification in a heterogeneous cohort of critically ill children through integration of host, pathogen, and microbiome features.FUNDINGSupport for this study was provided by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Heart, Lung, and Blood Institute (UG1HD083171, 1R01HL124103, UG1HD049983, UG01HD049934, UG1HD083170, UG1HD050096, UG1HD63108, UG1HD083116, UG1HD083166, UG1HD049981, K23HL138461, and 5R01HL155418) as well as by the Chan Zuckerberg Biohub.
Project description:BackgroundBacteria colonizing the upper respiratory tract (URT) of young children play a key role in the pathogenesis of lower respiratory tract infection (LRTI).ObjectivesTo systematically review the literature on the association between bacteria colonizing the URT and LRTI among young children.Data sourcesMEDLINE, Academic Search Premier, Africa-Wide Information and CINAHL, Scopus and Web of Science.Study eligibility criteriaStudies published between 1923 and 2020, investigating URT bacteria from LRTI cases and controls.ParticipantsChildren under 5 years with and without acute LRTI.MethodsThree reviewers independently screened titles, abstracts and full texts. Meta-analysis was done using Mantel-Haenszel fixed- or random-effects models.ResultsMost eligible studies (41/50) tested nasopharyngeal specimens when investigating URT bacteria. Most studies were of cross-sectional design (44/50). Twenty-four studies were performed in children in lower- or lower-middle-income countries (LMICs). There was higher prevalence of Haemophilus influenzae (pooled OR 1.60; 95% CI 1.23-2.07) and Klebsiella spp. (pooled OR 2.04; 95% CI 1.17-3.55) from URT specimens of cases versus controls. We observed a positive association between the detection of Streptococcus pneumoniae from URT specimens and LRTI after excluding studies where there was more antibiotic treatment prior to sampling in cases vs. controls (pooled OR 1.41; 95% CI 1.04-1.90). High density colonization with S. pneumoniae (>6.9 log10 copies/mL) was associated with an increased risk for LRTI. The associations between both Streptococcus and Haemophilus URT detection and LRTI were supported, at genus level, by 16S rRNA sequencing. Evidence for the role of Moraxella catarrhalis and Staphylococcus aureus was inconclusive.ConclusionsDetection of H. influenzae or Klebsiella spp. in the URT was associated with LRTI, while evidence for association with S. pneumoniae was less conclusive. Longitudinal studies assessing URT microbial communities, together with environmental and host factors are needed to better understand pathogenesis of childhood LRTI.