Abnormal brain functional network dynamics in obsessive-compulsive disorder patients and their unaffected first-degree relatives.
Ontology highlight
ABSTRACT: We utilized dynamic functional network connectivity (dFNC) analysis to compare participants with obsessive-compulsive disorder (OCD) with their unaffected first-degree relative (UFDR) and healthy controls (HC). Resting state fMRI was performed on 46 OCD, 24 UFDR, and 49 HCs, along with clinical assessments. dFNC analyses revealed two distinct connectivity states: a less frequent, integrated state characterized by the predominance of between-network connections (State I), and a more frequent, segregated state with strong within-network connections (State II). OCD patients spent more time in State II and less time in State I than HC, as measured by fractional windows and mean dwell time. Time in each state for the UFDR were intermediate between OCD patients and HC. Within the OCD group, fractional windows of time spent in State I was positively correlated with OCD symptoms (as measured by the obsessive compulsive inventory-revised [OCI-R], r = .343, p<.05, FDR correction) and time in State II was negatively correlated with symptoms (r = -.343, p<.05, FDR correction). Within each state we also examined connectivity within and between established intrinsic connectivity networks, and found that UFDR were similar to the OCD group in State I, but more similar to the HC groups in State II. The similarities between OCD and UFDR groups in temporal properties and State I connectivity indicate that these features may reflect the endophenotype for OCD. These results indicate that the temporal dynamics of functional connectivity could be a useful biomarker to identify those at risk.
SUBMITTER: Peng Z
PROVIDER: S-EPMC8356985 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA