Unknown

Dataset Information

0

Fall prediction in neurological gait disorders: differential contributions from clinical assessment, gait analysis, and daily-life mobility monitoring.


ABSTRACT:

Objective

To evaluate the predictive validity of multimodal clinical assessment outcomes and quantitative measures of in- and off-laboratory mobility for fall-risk estimation in patients with different forms of neurological gait disorders.

Methods

The occurrence, severity, and consequences of falls were prospectively assessed for 6 months in 333 patients with early stage gait disorders due to vestibular, cerebellar, hypokinetic, vascular, functional, or other neurological diseases and 63 healthy controls. At inclusion, participants completed a comprehensive multimodal clinical and functional fall-risk assessment, an in-laboratory gait examination, and an inertial-sensor-based daily mobility monitoring for 14 days. Multivariate logistic regression analyses were performed to identify explanatory characteristics for predicting the (1) the fall status (non-faller vs. faller), (2) the fall frequency (occasional vs. frequent falls), and (3) the fall severity (benign vs. injurious fall) of patients.

Results

40% of patients experienced one or frequent falls and 21% severe fall-related injuries during prospective fall assessment. Fall status and frequency could be reliably predicted (accuracy of 78 and 91%, respectively) primarily based on patients' retrospective fall status. Instrumented-based gait and mobility measures further improved prediction and provided independent, unique information for predicting the severity of fall-related consequences.

Interpretation

Falls- and fall-related injuries are a relevant health problem already in early stage neurological gait disorders. Multivariate regression analysis encourages a stepwise approach for fall assessment in these patients: fall history taking readily informs the clinician about patients' general fall risk. In patients at risk of falling, instrument-based measures of gait and mobility provide critical information on the likelihood of severe fall-related injuries.

SUBMITTER: Schniepp R 

PROVIDER: S-EPMC8357767 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9415310 | biostudies-literature
| S-EPMC9979429 | biostudies-literature
| S-EPMC3679383 | biostudies-literature
| S-EPMC5468293 | biostudies-literature
| S-EPMC5991382 | biostudies-literature
| S-EPMC8684617 | biostudies-literature
| S-EPMC6375907 | biostudies-other
2013-06-01 | E-GEOD-29540 | biostudies-arrayexpress
| S-EPMC8674878 | biostudies-literature
| S-EPMC5435996 | biostudies-literature