The regulating effects and mechanism of biochar and maifanite on copper and cadmium in a polluted soil-Lolium perenne L. system.
Ontology highlight
ABSTRACT: Arable land polluted by copper (Cu) and cadmium (Cd) is a widespread problem. The use of biochar and/or clay mineral as a soil amendment can effectively solidify heavy metals in the soil. We applied biochar (BC), iron modified biochar (Fe-BC), maifanite (MF, a kind of clay minerals), a combination of BC with MF (BC:MF), and Fe-BC with MF (Fe-BC:MF) at a 2 wt % dose as soil amendments to study their ability to prevent Cu and Cd from accumulating in ryegrass (Lolium perenne L.). We found that after 90 days of cultivation, the Cd and Cu content both significantly decreased in ryegrass shoots from 2.06 and 209.3 mg kg-1 (control) to 1.44-2.01 and 51.50-70.92 mg kg-1, respectively, across treatments (p < 0.05). Similarly, the bioconcentration factor (BCF) for Cd/Cu was significantly smaller (P < 0.05) in all amendments versus control soil. This trend differed among the shoot, BCF, and transportation factor (TF). Combining BC:MF or Fe-BC:MF did not significantly improve the Cd/Cu stabilization in the soil compared to the corresponding single amendment (p > 0.05). Our adsorption balance experiment showed that BC, Fe-BC, and MF physically and chemically adsorbed Cd and Cu by complexation with functional groups (mesoporous nanomaterials) whose porosity measurements ranged from 0.68 to 78.57 m2 g-1. Furthermore, the amorphous crystalline iron oxide binding Cd and Cu was the key to immobilizing these metals in the soil. The amendments applied in our study show promise for enhancing immobilization of Cu and Cd in contaminated paddy soils.
SUBMITTER: Ding Y
PROVIDER: S-EPMC8359803 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA