Unknown

Dataset Information

0

Multimorbidity prediction using link prediction.


ABSTRACT: Multimorbidity, frequently associated with aging, can be operationally defined as the presence of two or more chronic conditions. Predicting the likelihood of a patient with multimorbidity to develop a further particular disease in the future is one of the key challenges in multimorbidity research. In this paper we are using a network-based approach to analyze multimorbidity data and develop methods for predicting diseases that a patient is likely to develop. The multimorbidity data is represented using a temporal bipartite network whose nodes represent patients and diseases and a link between these nodes indicates that the patient has been diagnosed with the disease. Disease prediction then is reduced to a problem of predicting those missing links in the network that are likely to appear in the future. We develop a novel link prediction method for static bipartite network and validate the performance of the method on benchmark datasets. By using a probabilistic framework, we then report on the development of a method for predicting future links in the network, where links are labelled with a time-stamp. We apply the proposed method to three different multimorbidity datasets and report its performance measured by different performance metrics including AUC, Precision, Recall, and F-Score.

SUBMITTER: Aziz F 

PROVIDER: S-EPMC8360941 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10895345 | biostudies-literature
| S-EPMC5220354 | biostudies-other
| S-EPMC5515441 | biostudies-literature
| S-EPMC9017186 | biostudies-literature
| S-EPMC5629619 | biostudies-literature
| S-EPMC7575873 | biostudies-literature
| S-EPMC5367313 | biostudies-literature
| S-EPMC6275482 | biostudies-literature
| S-EPMC7156691 | biostudies-literature
| S-EPMC6152467 | biostudies-literature