Project description:AimsTo identify novel pathogenic gene of febrile seizures (FS)/epilepsy with antecedent FS (EFS+).MethodsThe trio-based whole-exome sequencing was performed in a cohort of 462 cases with FS/EFS+. Silico programs, sequence alignment, and protein modeling were used to predict the damaging of variants. Statistical testing was performed to analyze gene-based burden of variants.ResultsFive heterozygous missense variants in CELSR3 were detected in five cases (families) with eight individuals (five females, three males) affected. Two variants were de novo, and three were identified in families with more than one individual affected. All the variants were predicted to be damaging in silico tools. Protein modeling showed that the variants resulted in disappearance of multiple hydrogen bonds and one disulfide bond, which potentially caused functional impairments of protein. The frequency of CELSR3 variants identified in this study was significantly higher than that in controls. All affected individuals were diagnosed with FS/EFS+, including six patients with FS and two patients with EFS+. All cases presented favorable outcomes without neurodevelopmental disorders.ConclusionsCELSR3 variants are potentially associated with FS/EFS+.
Project description:PurposeTo identify novel genetic causes of febrile seizures (FS) and epilepsy with febrile seizures plus (EFS+).MethodsWe performed whole-exome sequencing in a cohort of 32 families, in which at least two individuals were affected by FS or EFS+. The probands, their parents, and available family members were recruited to ascertain whether the genetic variants were co-segregation. Genes with repetitively identified variants with segregations were selected for further studies to define the gene-disease association.ResultsWe identified two heterozygous ATP6V0C mutations (c.64G > A/p.Ala22Thr and c.361_373del/p.Thr121Profs*7) in two unrelated families with six individuals affected by FS or EFS+. The missense mutation was located in the proteolipid c-ring that cooperated with a-subunit forming the hemichannel for proton transferring. It also affected the hydrogen bonds with surround residues and the protein stability, implying a damaging effect. The frameshift mutation resulted in a loss of function by yielding a premature termination of 28 residues at the C-terminus of the protein. The frequencies of ATP6V0C mutations identified in this cohort were significantly higher than that in the control populations. All the six affected individuals suffered from their first FS at the age of 7-8 months. The two probands later manifested afebrile seizures including myoclonic seizures that responded well to lamotrigine. They all displayed favorable outcomes without intellectual or developmental abnormalities, although afebrile seizures or frequent seizures occurred.ConclusionThis study suggests that ATP6V0C is potentially a candidate pathogenic gene of FS and EFS+. Screening for ATP6V0C mutations would help differentiating patients with Dravet syndrome caused by SCN1A mutations, which presented similar clinical manifestation but different responses to antiepileptic treatment.
Project description:Background and purposeFebrile seizures (FS), the most common seizures in childhood and often accompanied by later epileptogenesis, are not well controlled. Inflammatory processes have been implicated in the pathophysiology of epilepsy. However, whether caspase-1 is involved in FS generation and could be a target for the treatment of FS is still unclear.Experimental approachBy using pharmacological and gene intervention methods in C57BL/6J mice, we assessed the role of caspase-1 in FS generation. We used structural virtual screening against the active site of caspase-1, to screen compounds for druggable and safe low MW inhibitors of caspase-1 in vitro. One compound was chosen to test in vivo for therapeutic potential, using FS models in neonatal mice and epileptogenesis in adult mice.Key resultsIn mice, levels of cleaved caspase-1 increased prior to FS onset. Caspase-1-/- mice were resistant to FS and showed lower neuronal excitability than wild-type littermates. Conversely, overexpression of caspase-1 using in utero electroporation increased neuronal excitability and enhanced susceptibility to FS. The structural virtual screening, using molecular docking approaches for the active site of caspase-1 of over 1 million compounds yielded CZL80, a brain-penetrable, low MW inhibitor of caspase-1. In neonatal mice, CZL80 markedly reduced neuronal excitability and incidence of FS generation, and, in adult mice, relieved later enhanced epileptogenic susceptibility. CZL80 was devoid of acute diazepam-like respiratory depression and chronic liver toxicity.Conclusion and implicationsCaspase-1 is essential for FS generation. CZL80 is a promising low MW inhibitor of FS and later enhanced epileptogenic susceptibility.
Project description:Osteosarcoma is a malignancy of the bone that primarily affects adolescents. Current treatments retain mortality rates, which are higher than average cancer mortality rates for the adolescent age group. We designed a micellar delivery system with the aim to increase drug accumulation in the tumor and potentially reduce side effects associated with chemotherapy. The design features are the use of the hydrophilic D-aspartic acid octapeptide as both the effective targeting agent as well as the hydrophilic micelle corona. Micelle stabilization was accomplished by binding of model drug (doxorubicin) via an acid-sensitive hydrazone bond and incorporating one to four 11-aminoundecanoic acid (AUA) moieties to manipulate the hydrophobic/hydrophilic ratio. Four micelle-forming unimers have been synthesized and their self-assembly into micelles was evaluated. Size of the micelles could be modified by changing the architecture of the unimers from linear to branched. The stability of the micelles increased with increasing content of AUA moieties. Adsorption of all micelles to hydroxyapatite occurred rapidly. Doxorubicin release occurred at pH 5.5, whereas no release was detected at pH 7.4. Cytotoxicity toward human osteosarcoma Saos-2 cells correlated with drug release data.
Project description:ObjectiveADGRV1 gene encodes adhesion G protein-coupled receptor-V1 that is involved in synaptic function. ADGRV1 mutations are associated with audio-visual disorders. Although previous experimental studies suggested that ADGRV1 variants were associated with epilepsy, clinical evidence is limited and the phenotype spectrum is to be defined.MethodsTrio-based targeting sequencing was performed in a cohort of 101 cases with febrile seizure (FS) and epilepsy with antecedent FS. Protein modeling was used to assess the damaging effects of variants. The genotype-phenotype correlations of the ADGRV1 variants in epilepsy and audio-visual disorders were analyzed.ResultsADGRV1 variants were identified in nine unrelated cases (8.91%), including two heterozygous frameshift variants, six heterozygous missense variants, and a pair of compound heterozygous variants. These variants presented a statistically higher frequency in this cohort than that in control populations. Most missense variants were located at CalX-β motifs and changed the hydrogen bonds. These variants were inherited from the asymptomatic parents, indicating an incomplete penetrance. We also identified SCN1A variants in 25 unrelated cases (24.75%) and SCN9A variants in 3 unrelated cases (2.97%) in this cohort. Contrary to SCN1A variant-associated epilepsy that revealed seizure was aggravated by sodium channel blockers, ADGRV1 variants were associated with mild epilepsy with favorable responses to antiepileptic drugs. The patients denied problems with audio-visual-vestibular abilities in daily life. However, audio-visual tests revealed auditory and visual impairment in the patient with compound heterozygous variants, auditory or vestibular impairment in the patients with heterozygous frameshift, or hydrogen-bond changed missense variants but no abnormalities in the patients with missense variants without hydrogen-bond changes. Previously reported ADGRV1 variants that were associated with audio-visual disorders were mostly biallelic/destructive variants, which were significantly more frequent in the severe phenotype of audio-visual disorders (Usher syndrome 2) than in other mild phenotypes. In contrast, the variants identified in epilepsy were monoallelic, missense mainly located at CalX-β, or affected isoforms VLGR1b/1c.SignificanceADGRV1 is potentially associated with FS-related epilepsy as a susceptibility gene. The genotype, submolecular implication, isoforms, and damaging severity of the variants explained the phenotypical variations. ADGRV1 variant-associated FS/epilepsy presented favorable responses to antiepileptic drugs, implying a clinical significance.
Project description:Febrile seizure (FS), which occurs in febrile children without underlying health problems, is the most common type of seizure disorder in children. The suggested pathogenesis of FS derived from several animal and human studies is multifactorial and debatable. Neuronal hyperexcitability, which develops during inflammatory responses that accompany fever, provokes seizures. However, the exact role of each inflammatory mediator (e.g., cytokines) is undefined in terms of the connection between systemic or local inflammation and the central nervous system, and the mechanisms by which cytokines increase neuronal excitability remain unclear. In contrast, the cause of fever in most children with FS is usually mild respiratory virus infection (e.g., rhinovirus, influenza virus, adenovirus, and enterovirus) rather than severe bacterial infections. In temperate regions, the major causative respiratory viruses seem to mirror seasonally prevalent respiratory viruses in the community. Therefore, vigorous efforts to identify the causative pathogen of fever may not be necessary in children with FS. Genetic factors seem to play a role in neuronal hyperexcitability, and some types of genetic variation have been identified in several genes encoding ion channels of neurons that participate in neuronal excitation. Although most children with FS have benign outcomes, some characteristics such as complex FS, febrile status epilepticus, consecutive afebrile seizures, and the presence of neurodevelopmental disabilities may require further genetic and neurologic evaluations.
Project description:ObjectiveFebrile seizures are usually benign and are not presented with neurological manifestation. However, complex febrile seizures are presented with recurrence and might require meticulous management. The aim of this study was to evaluate the demographic, clinical, and laboratory parameters of children with febrile seizures and the correlation between these factors.MethodsIn this retrospective study, children presented with febrile seizure in 2019 presented (XXX) were included. Data based on their history, physical examination, and laboratory tests and discharge recommendations were recorded in a checklist. Data were computerized and statistically analyzed using SPSSv25.ResultsOf 77 patients were studied, the mean age of the patients was 29.4 ± 17.6. The mean duration of seizures was 5.09 ± 3.78 min and the mean temperature during seizures was 38.41 ± 0.83 °C. In 44 (57.14%) patients no cause of the fever was recorded. 10 (12.99%) patients had multiple seizures within 24 h 70 (90.91%) seizures ended without medication, and 5 (6.49%) patients were treated with diazepam. The gender of the patients was only correlated with white blood cells, p = 0.014. Other laboratory parameters did not show significant correlation with the gender, p > 0.05. The discharge recommendation was significantly correlated with recurrence within 24 h and type of seizure, p < 0.001, respectively. Lab parameters were significantly associated with family history, p = 0.036 and post-seizure drug, p = 0.005.ConclusionOur study showed that biochemical findings may not be suggestive of febrile seizures and recurrence of seizures and family history is associated with the course of treatment in terms of drugs and imaging.
Project description:Complex febrile seizures (CFS), a subset of paediatric febrile seizures (FS), have been studied for their prognosis, epileptogenic potential and neurocognitive outcome. We evaluated their functional connectivity differences with simple febrile seizures (SFS) in children with recent-onset FS. Resting-state fMRI (rs-fMRI) datasets of 24 children with recently diagnosed FS (SFS-n = 11; CFS-n = 13) were analysed. Functional connectivity (FC) was estimated using time series correlation of seed region-to-whole-brain-voxels and network topology was assessed using graph theory measures. Regional connectivity differences were correlated with clinical characteristics (FDR corrected p < 0.05). CFS patients demonstrated increased FC of the bilateral middle temporal pole (MTP), and bilateral thalami when compared to SFS. Network topology study revealed increased clustering coefficient and decreased participation coefficient in basal ganglia and thalamus suggesting an inefficient-unbalanced network topology in patients with CFS. The number of seizure recurrences negatively correlated with the integration of Left Thalamus (r = - 0.58) and FC of Left MTP to 'Right Supplementary Motor and left Precentral' gyrus (r = - 0.53). The FC of Right MTP to Left Amygdala, Putamen, Parahippocampal, and Orbital Frontal Cortex (r = 0.61) and FC of Left Thalamus to left Putamen, Pallidum, Caudate, Thalamus Hippocampus and Insula (r 0.55) showed a positive correlation to the duration of the longest seizure. The findings of the current study report altered connectivity in children with CFS proportional to the seizure recurrence and duration. Regardless of the causal/consequential nature, such observations demonstrate the imprint of these disease-defining variables of febrile seizures on the developing brain.
Project description:ImportanceSudden unexplained death in childhood (SUDC) is the fifth leading category of death among toddlers but remains underrecognized and inadequately studied.ObjectiveTo assess the potential role of febrile seizures (FS) and other risk factors associated with SUDC and describe the epidemiology, mechanisms, and prevention of SUDC.Design, setting, and participantsThis case series study reviewed 622 consecutive sudden child death cases aged 1 to 17 years from 2001 to 2017 from 18 countries. Data were collected from family members of children who died suddenly; these families voluntarily registered with the SUDC Foundation. Data analysis was conducted from November 2017 to February 2019.Main outcome measuresCertified manner of death characterized as accident, natural, or undetermined.ResultsA total of 391 families with decedents aged 1 to 6 years completed a comprehensive interview on medical and social histories, and circumstances of death with forensic evaluations revealing a cause of death (sudden explained death in childhood [SEDC]) or no cause of death (SUDC). Of these children, 231 (59.1%) were male, the mean (SD) age at death was 24.9 (12.8) months, and 104 (26.6%) had a history of FS. Compared with the general population FS prevalence (2%-5%), FS prevalence among SUDC (28.8%; 95% CI, 23.3%-34.2%) and SEDC (22.1%; 95% CI, 14.8%-29.3%) were elevated. The odds of death during sleep was 4.6-fold higher in SUDC than in SEDC cases (odds ratio, 4.61; 95% CI, 1.92-11.09; adjusted P = .008). The siblings of SUDC cases were followed up for 3144 life-years, and none died prematurely from SUDC.Conclusions and relevanceThis analysis of the largest SUDC cohort confirmed an increased FS rate and found significantly increased rates of FS among SEDC. This study suggests that seizures may contribute to some SUDC and SEDC deaths. The risk of sudden death in a sibling was low. To develop and assess preventive strategies, population-based studies are needed to define the epidemiology and spectrum of risk factors and identify biomarkers of patients with FS at high risk of sudden death.
Project description:ObjectiveThe PKD1 encodes polycystin-1, a large transmembrane protein that plays important roles in cell proliferation, apoptosis, and cation transport. Previous studies have identified PKD1 mutations in autosomal dominant polycystic kidney disease (ADPKD). However, the expression of PKD1 in the brain is much higher than that in the kidney. This study aimed to explore the association between PKD1 and epilepsy.MethodsTrios-based whole-exome sequencing was performed in a cohort of 314 patients with febrile seizures or epilepsy with antecedent febrile seizures. The damaging effects of variants was predicted by protein modeling and multiple in silico tools. The genotype-phenotype association of PKD1 mutations was systematically reviewed and analyzed.ResultsEight pairs of compound heterozygous missense variants in PKD1 were identified in eight unrelated patients. All patients suffered from febrile seizures or epilepsy with antecedent febrile seizures with favorable prognosis. All of the 16 heterozygous variants presented no or low allele frequencies in the gnomAD database, and presented statistically higher frequency in the case-cohort than that in controls. These missense variants were predicted to be damaging and/or affect hydrogen bonding or free energy stability of amino acids. Five patients showed generalized tonic-clonic seizures (GTCS), who all had one of the paired missense mutations located in the PKD repeat domain, suggesting that mutations in the PKD domains were possibly associated with GTCS. Further analysis demonstrated that monoallelic mutations with haploinsufficiency of PKD1 potentially caused kidney disease, compound heterozygotes with superimposed effects of two missense mutations were associated with epilepsy, whereas the homozygotes with complete loss of PKD1 would be embryonically lethal.ConclusionPKD1 gene was potentially a novel causative gene of epilepsy. The genotype-phenotype relationship of PKD1 mutations suggested a quantitative correlation between genetic impairment and phenotypic variation, which will facilitate the genetic diagnosis and management in patients with PKD1 mutations.