Unknown

Dataset Information

0

Combined Support Vector Machine Classifier and Brain Structural Network Features for the Individual Classification of Amnestic Mild Cognitive Impairment and Subjective Cognitive Decline Patients.


ABSTRACT:

Objective

Individuals with subjective cognitive decline (SCD) or amnestic mild cognitive impairment (aMCI) represent important targets for the early detection and intervention of Alzheimer's disease (AD). In this study, we employed a multi-kernel support vector machine (SVM) to examine whether white matter (WM) structural networks can be used for screening SCD and aMCI.

Methods

A total of 138 right-handed participants [51 normal controls (NC), 36 SCD, 51 aMCI] underwent MRI brain scans. For each participant, three types of WM networks with different edge weights were constructed with diffusion MRI data: fiber number-weighted networks, mean fractional anisotropy-weighted networks, and mean diffusivity (MD)-weighted networks. By employing a multiple-kernel SVM, we seek to integrate information from three weighted networks to improve classification performance. The accuracy of classification between each pair of groups was evaluated via leave-one-out cross-validation.

Results

For the discrimination between SCD and NC, an area under the curve (AUC) value of 0.89 was obtained, with an accuracy of 83.9%. Further analysis revealed that the methods using three types of WM networks outperformed other methods using single WM network. Moreover, we found that most of discriminative features were from MD-weighted networks, which distributed among frontal lobes. Similar classification performance was also reported in the differentiation between subjects with aMCI and NCs (accuracy = 83.3%). Between SCD and aMCI, an AUC value of 0.72 was obtained, with an accuracy of 72.4%, sensitivity of 74.5% and specificity of 69.4%. The highest accuracy was achieved with features only selected from MD-weighted networks.

Conclusion

White matter structural network features help machine learning algorithms accurately identify individuals with SCD and aMCI from NCs. Our findings have significant implications for the development of potential brain imaging markers for the early detection of AD.

SUBMITTER: Huang W 

PROVIDER: S-EPMC8361326 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8312851 | biostudies-literature
| S-EPMC6491896 | biostudies-literature
| S-EPMC7593791 | biostudies-literature
| S-EPMC8484524 | biostudies-literature
| S-EPMC8415752 | biostudies-literature
| S-EPMC7046646 | biostudies-literature
| S-EPMC7721238 | biostudies-literature
| S-EPMC6732671 | biostudies-literature
2024-09-26 | PXD056265 |
| S-EPMC7488541 | biostudies-literature