Project description:IntroductionIn-vivo fluorescence imaging techniques using indocyanine green (ICG) to identify liver tumours and hepatic segment boundaries have been recently developed. The purpose of this study is to evaluate the efficacy of fusion ICG-fluorescence imaging for navigation during hepatectomy.Methods and analysisThis will be an exploratory single-arm clinical trial; patients with liver tumours will undergo hepatectomy using the ICG-fluorescence imaging system. In total, 110 patients with liver tumours scheduled for elective hepatectomy will be included in this study. Preoperatively, ICG will be intravenously injected at a dose of 0.5?mg/kg body weight within 2 days. To detect liver tumours intraoperatively, the hepatic surface will be initially observed using the ICG-fluorescence imaging system. After identifying and clamping the portal pedicle corresponding to the hepatic segments, including the liver tumours to be resected, additional ICG will be injected intravenously at a dose of 0.5?mg/kg body weight to identify the boundaries of the hepatic segments. The primary outcome measure will be the success or failure of the ICG-fluorescence imaging system in identifying hepatic segments. The secondary outcomes will be the success or failure in identifying liver tumours, liver function indicators, operative time, blood loss, rate of postoperative complications and recurrence-free survival. The findings obtained through this study are expected to help to establish the utility of ICG-fluorescence imaging systems, and therefore contribute to prognostic outcome improvements in patients undergoing hepatectomy for various causes.Ethics and disseminationThe protocol has been approved by the Kobe University Clinical Research Ethical Committee. The findings of this study will be disseminated widely through peer-reviewed publications and conference presentations.Trial registration numberUMIN000031054 and jRCT1051180070.
Project description:BackgroundThe naked-eye invisibility of indocyanine green fluorescence limits the application of near-infrared fluorescence imaging (NIR) systems for real-time navigation during sentinel lymph node biopsy (SLNB) in patients with breast cancer undergoing surgery. This study aims to evaluate the effectiveness and safety of a novel NIR system in visualizing indocyanine green fluorescence images in the surgical field and the application value of combined methylene blue (MB) and the novel NIR system in SLNB.MethodsSixty patients with clinical node-negative breast cancer received indocyanine green (ICG) and MB as tracers. Two NIR system instruments, namely, lymphatic fluorescence imaging system (LFIS) designed by the University of Science and Technology of China and vascular imager by Langfang Mingde Medical Biotechnology Co., Ltd. (Langfang vascular imager), were used as navigation assistance to locate sentinel lymph nodes (SLNs). Excising the lymph nodes developed by both MB and ICG by two NIR systems or palpably suspicious as SLNs and undergoing rapid pathological examination.ResultsBoth instruments exhibited 95% (57/60) success for real-time lymphatic fluorescent images. A total of 186 SLNs were identified, of which two were pathologically confirmed as lacking any lymph node tissue. SLN identification rate was 100% (184/184) for MB plus LFIS and 86.96% (160/184) for MB alone. The median number of SLNs identified by LFIS combined with MB was 3 (range of 1-8), which was significantly higher than that by MB alone at 2 (range 1-7) (P<0.05).ConclusionLFIS effectively detects SLNs in breast cancer, projects the fluorescence signals during surgery, and provides a continuous surgical navigation system without the need for a remote monitor. The ICG method navigated by combined LFIS and MB may be a promising alternative tracer for radioisotope in SLN mapping.Clinical trial registrationThis clinical trial was registered with the China Clinical Trial Center, registration number ChiCTR2000039542.
Project description:Intra-abdominal adhesions have consistently posed a challenge for surgeons during procedures. This study aims to investigate the feasibility of utilizing indocyanine green (ICG) in conjunction with near-infrared imaging for the detection of intra-abdominal adhesions. In vitro, we analyzed factors affecting ICG fluorescence. We divided SD rats into groups to study ICG excretion in different digestive tract regions. Additionally, we reviewed surgical videos from previous cholecystectomy cases, categorizing them by ICG injection timing and assessing fluorescence imaging in various digestive tract regions. Finally, we preoperatively injected ICG into two cholecystectomized patients with abdominal adhesions, guiding intraoperative adhesiolysis with near-infrared fluorescence imaging. In vitro, we observed a significant influence of protein and ICG concentrations on ICG fluorescence intensity. Our rat experiments unveiled a strong and highly significant correlation (Kendall's tau-b = 1, P < 0.001) between the timing of ICG injection and the farthest point of intestinal fluorescence. A retrospective case analysis further validated this finding (Kendall's tau-b = 0.967, P < 0.001). Under the guidance of fluorescence navigation, two cholecystectomized patients with intra-abdominal adhesions successfully underwent adhesiolysis, and no postoperative complications occurred. The intraoperative combination of ICG with near-infrared fluorescence imaging effectively enhances the visibility of the liver, bile ducts, and various segments of the gastrointestinal tract while providing real-time navigation. This real-time fluorescence guidance has the potential to aid surgeons in the dissection of intra-abdominal adhesions.
Project description:IntroductionBronchoplasty is widely accepted as a standard technique with a high degree of difficulty in maintaining a surgical margin for non-small-cell lung cancer (NSCLC). The key to the success of the bronchial anastomosis is both tension and the blood flow. However, local tension is inconsistent with blood distribution.Case presentationOperative finding of the right upper bronchoplasty after chemoradiotherapyshowed clear green staining of the upper bronchus, and afterwards, a membranous area of the truncus intermedius. The blood supply of the bronchial anastomosis judged to be enough.DiscussionIndocyanine green imaging (ICG) can help a scheduled operation be performed safely, especially in extreme situations where there is concern about the blood supply during bronchoplasty.ConclusionThis report describes a first case concerning the blood distribution of the bronchial anastomosis for bronchoplasty after induction therapy under fluorescence navigation.
Project description:BackgroundSurgical operation plays an important role in the treatment of cancer. The success of the operation lies in the complete removal of the primary and disseminated tumor tissue while preserving the normal tissue. The development of optical molecular image navigation technology has provided a new option for intraoperative tumor visualization. In this study, a fluorescence imaging navigation system was used to detect the diameter of mice tumors and provide experimental evidence for the further development of digital diagnosis and treatment equipment.MethodsThe minimum detection concentration in vitro of the fluorescence imaging navigation system for indocyanine green (ICG) was first detected, then 120 female Institute of Cancer Research (ICR) mice and 120 female BALB/c nude mice were randomly divided into three groups by weight, high-dose (H, 4 mg/kg), middle-dose (M, 2 mg/kg), and low-dose (L, 1 mg/kg) groups of ICG solution. After inoculating solid tumors, high, medium, and low doses of ICG were injected via the tail vein, and the tumor diameter was measured by a fluorescence imaging navigation system and vernier caliper within 24 hours of injection.ResultsThe minimum detectable diameter of the system could reach 0.2 mm compared with the vernier caliper, and the actual measurement error was within 0.2 mm.ConclusionsA fluorescence imaging navigation system has high accuracy and sensitivity in the application of tumor detection, which may assist the clinical diagnosis and treatment of tumors.
Project description:PurposeTo explore the role of indocyanine green (ICG) fluorescence navigation in laparoscopic hepatectomy and investigate if the timing of its administration influences the intraoperative observation.MethodsThe subjects of this retrospective study were 120 patients who underwent laparoscopic hepatectomy; divided into an ICG-FN group (n = 57) and a non-ICG-FN group (n = 63). We analyzed the baseline data and operative data.ResultsThere were no remarkable differences in baseline data such as demographic characteristics, lesion-related characteristics, and liver function parameters between the groups. Operative time and intraoperative blood loss were significantly lower in the ICG-FN group. The rate of R0 resection of malignant tumors was comparable in the ICG-FN and non-ICG-FN groups, but the wide surgical margin rate was significantly higher in the ICG-FN group. The administration of ICG 0-3 or 4-7 days preoperatively did not affect the intraoperative fluorescence imaging. Operative time, intraoperative blood loss, and a wide surgical margin correlated with ICG fluorescence navigation. ICG fluorescence navigation helped to minimize intraoperative blood loss and achieve a wide surgical margin.ConclusionICG fluorescence navigation is safe and efficient in laparoscopic hepatectomy. It helps to achieve a wide surgical margin, which could result in a better prognosis. The administration of ICG 0-3 days preoperatively is acceptable.
Project description:Near infrared fluorescence-guidance can be used for the detection of small cancer metastases and can aid in the endoscopic management of cancer. Indocyanine green (ICG) is a Food and Drug Administration (FDA)-approved fluorescence agent. Through non-specific interactions with serum proteins, ICG achieves enhanced permeability and retention (EPR) effects. Yet, ICG demonstrates rapid clearance from the circulation. Therefore, ICG may be an ideal contrast agent for real-time fluorescence imaging of tumors. To evaluate the usefulness of real-time dual fluorescence and white light endoscopic optical imaging to detect tumor implants using the contrast agent ICG, fluorescence-guided laparoscopic procedures were performed in mouse models of peritoneally disseminated ovarian cancers. Animals were administered intravenous ICG or a control contrast agent, IR800-conjugated to albumin. The ability to detect small ovarian cancer implants was then compared. Using the dual view microendoscope, ICG clearly enabled visualization of peritoneal ovarian cancer metastatic nodules derived from SHIN3 and OVCAR5 cells at 6 and 24 hr after injection with significantly higher tumor-to-background ratio than the control agent, IR800-albumin (p < 0.001). In conclusion, ICG has the desirable properties of having both EPR effects and rapid clearance for the real-time endoscopic detection of tiny ovarian cancer peritoneal implants compared to a control macromolecular agent with theoretically better EPR effects but longer circulatory retention. Given that ICG is already FDA-approved and has a long track record of human use, this method could be easily translated to the clinic as a robust tool for fluorescence-guided endoscopic procedures for the management and treatment of cancer.
Project description:BackgroundPrimary intrahepatic bile duct dilatation can be very harmful to patients although it belongs to benign biliary disease. It can occur in any part of the liver, intraoperative laparoscopic ultrasound (LUS) guidance combine with real-time indocyanine green (ICG) fluorescence navigation are the means of choice for accurate surgical resection.Case presentationHerein we reported a 43-year-old female patient presented with repeated right upper abdominal pain and distension for 3 years and aggravated for half a year, without fever and jaundice. A diagnosis of localized bile duct dilatation with lithiasis in segment 4 (S4) was made on the basis of preoperative imaging. Correspondingly, we selected to perform a laparoscopic surgery with LUS guided real time ICG fluorescence imaging (ICG-FI) and navigation to make the operation more simply and accurately, as well as to retain normal tissues in a certain extent. Laparoscopic resection of S4b and partial S4a was successfully performed, without any complications.ConclusionLaparoscopic anatomical surgery for intrahepatic bile duct dilatation is a technically challenging operation. The combined use of preoperative three-dimensional computerized tomography (CT) planning, intraoperative LUS guided super-selection, ICG hepatic segment staining and real-time fluorescence navigation could help surgeons accurately complete the segmentectomy or subsegmentectomy with minimized trauma and maximized liver tissue preservation.