A genetic sum score of effect alleles associated with serum lipid concentrations interacts with educational attainment.
Ontology highlight
ABSTRACT: High-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol (TC) levels are influenced by both genes and the environment. The aim was to investigate whether education and income as indicators of socioeconomic position (SEP) interact with lipid-increasing genetic effect allele scores (GES) in a population-based cohort. Using baseline data of 4516 study participants, age- and sex-adjusted linear regression models were fitted to investigate associations between GES and lipids stratified by SEP as well as including GES×SEP interaction terms. In the highest education group compared to the lowest stronger effects per GES standard deviation were observed for HDL-C (2.96 mg/dl [95%-CI: 2.19, 3.83] vs. 2.45 mg/dl [95%-CI: 1.12, 3.72]), LDL-C (6.57 mg/dl [95%-CI: 4.73, 8.37] vs. 2.66 mg/dl [95%-CI: -0.50, 5.76]) and TC (8.06 mg/dl [95%-CI: 6.14, 9.98] vs. 4.37 mg/dl [95%-CI: 0.94, 7.80]). Using the highest education group as reference, interaction terms showed indication of GES by low education interaction for LDL-C (ßGES×Education: -3.87; 95%-CI: -7.47, -0.32), which was slightly attenuated after controlling for GESLDL-C×Diabetes interaction (ßGES×Education: -3.42; 95%-CI: -6.98, 0.18). The present study showed stronger genetic effects on LDL-C in higher SEP groups and gave indication for a GESLDL-C×Education interaction, demonstrating the relevance of SEP for the expression of genetic health risks.
SUBMITTER: Emmel C
PROVIDER: S-EPMC8368036 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA