Ontology highlight
ABSTRACT: Objectives
Developing a vaccine formula that alters the tumor-infiltrating lymphocytes to be more immune active against a tumor is key to the improvement of clinical responses to immunotherapy. Here, we demonstrate that, in conjunction with E7 antigen-specific immunotherapy, and IL-10 and PD-1 blockade, intratumoral administration of caerin 1.1/1.9 peptides improves TC-1 tumor microenvironment (TME) to be more immune active than injection of a control peptide.Methods
We compared the survival time of vaccinated TC-1 tumor-bearing mice with PD-1 and IL-10 blockade, in combination with a further injection of caerin 1.1/1.9 or control peptides. The tumor-infiltrating haematopoietic cells were examined by flow cytometry. Single-cell transcriptomics and proteomics were used to quantify changes in cellular activity across different cell types within the TME.Results
The injection of caerin 1.1/1.9 increased the efficacy of vaccinated TC-1 tumor-bearing mice with anti-PD-1 treatment and largely expanded the populations of macrophages and NK cells with higher immune activation level, while reducing immunosuppressive macrophages. More activated CD8+ T cells were induced with higher populations of memory and effector-memory CD8+ T subsets. Computational integration of the proteome with the single-cell transcriptome supported activation of Stat1-modulated apoptosis and significant reduction in immune-suppressive B-cell function following caerin 1.1 and 1.9 treatment.Conclusions
Caerin 1.1/1.9-containing treatment results in improved antitumor responses. Harnessing the novel candidate genes preferentially enriched in the immune active cell populations may allow further exploration of distinct macrophages, T cells and their functions in TC-1 tumors.
SUBMITTER: Ni G
PROVIDER: S-EPMC8369845 | biostudies-literature |
REPOSITORIES: biostudies-literature