Project description:BackgroundWidespread MDR Streptococcus pneumoniae in China translates clinically into a substantial pneumococcal disease burden and related morbidity and mortality, particularly in the elderly and children. Nafithromycin (WCK 4873), a novel lactone ketolide class of antibiotic designed with a 3 day, once-daily regimen is highly active against resistant pneumococci and other community respiratory pathogens. It is currently in clinical development for the treatment of community-acquired bacterial pneumonia (CABP).ObjectivesTo determine the in vitro activity of nafithromycin against clinical S. pneumoniae isolates collected during 2015-21 from three hospitals in mainland China.MethodsA total of 920 clinical isolates (one isolate per patient), which predominantly with the macrolide- and clindamycin-resistant phenotype were included in this study. The MICs of nafithromycin and other antibiotics tested were determined using the reference broth microdilution method.ResultsClinical S. pneumoniae isolates used in this study showed high macrolide and clindamycin resistance (>95% against erythromycin and azithromycin and 80% against clindamycin) for which nafithromycin showed potent activity (MIC50/90; 0.03/0.06 mg/L) with 100% susceptibility at a proposed pharmacokinetics/pharmacodynamics (PK/PD) breakpoint of 0.25 mg/L. Among other classes of antibiotics tested, moxifloxacin also showed good activity while amoxicillin/clavulanate and ceftriaxone showed lower susceptibility.ConclusionsNafithromycin exhibited therapeutically relevant in vitro antibacterial activity against contemporary highly resistant pneumococci collected from mainland China. This study supports the clinical development of nafithromycin for the management of CABP caused by pneumococci in China.
Project description:Nafithromycin (WCK 4873), a novel antimicrobial agent of the lactone ketolide class, is currently in phase 2 development for treatment of community-acquired bacterial pneumonia (CABP). A total of 4,739 nonduplicate isolates were selected from a 2014 global surveillance program at medical institutions located in 43 countries within the United States, Europe, Latin America, and the Asia-Pacific region. Nafithromycin and comparator agents were used for susceptibility testing by reference broth microdilution methods. Nafithromycin was active against Staphylococcus aureus (MIC50/90, 0.06/>2 μg/ml), including erythromycin-resistant strains exhibiting an inducible clindamycin resistance phenotype (MIC50/90, 0.06/0.06 μg/ml) and telithromycin-susceptible strains (MIC50/90, 0.06/0.06 μg/ml), but it exhibited limited activity against most telithromycin-resistant and clindamycin-resistant isolates that were constitutively resistant to macrolides (MIC50/90, >2/>2 μg/ml). Nafithromycin was very active (MIC50/90, 0.015/0.06 μg/ml) against 1,911 Streptococcus pneumoniae strains, inhibiting all strains, with MIC values of ≤0.25 μg/ml. Telithromycin susceptibility was 99.9% for Streptococcus pneumoniae strains, and nafithromycin was up to 8-fold more potent than telithromycin. Overall, 37.9% of S. pneumoniae strains were resistant to erythromycin, and 19.7% were resistant to clindamycin. Nafithromycin was highly active against 606 Streptococcus pyogenes strains (MIC50/90, 0.015/0.015 μg/ml), inhibiting 100.0% of isolates at ≤0.5 μg/ml, and MIC50/90 values (0.015/0.015 to 0.03 μg/ml) were similar for the 4 geographic regions. Nafithromycin and telithromycin demonstrated comparable in vitro activities against 1,002 Haemophilus influenzae isolates and 504 Moraxella catarrhalis isolates. Overall, nafithromycin showed potent in vitro activity against a broad range of contemporary (2014) global pathogens. These results support the continued clinical development of nafithromycin for treatment of CABP.
Project description:The nafithromycin concentrations in the plasma, epithelial lining fluid (ELF), and alveolar macrophages (AM) of 37 healthy adult subjects were measured following repeated dosing of oral nafithromycin at 800 mg once daily for 3 days. The values of noncompartmental pharmacokinetic (PK) parameters were determined from serial plasma samples collected over a 24-h interval following the first and third oral doses. Each subject underwent one standardized bronchoscopy with bronchoalveolar lavage (BAL) at 3, 6, 9, 12, 24, or 48 h after the third dose of nafithromycin. The mean ± standard deviation values of the plasma PK parameters after the first and third doses included maximum plasma concentrations (Cmax) of 1.02 ± 0.31 ?g/ml and 1.39 ± 0.36 ?g/ml, respectively; times to Cmax of 3.97 ± 1.30 h and 3.69 ± 1.28 h, respectively; clearances of 67.3 ± 21.3 liters/h and 52.4 ± 18.5 liters/h, respectively, and elimination half-lives of 7.7 ± 1.1 h and 9.1 ± 1.7 h, respectively. The values of the area under the plasma concentration-time curve (AUC) from time zero to 24 h postdosing (AUC0-24) for nafithromycin based on the mean or median total plasma concentrations at BAL fluid sampling times were 16.2 ?g · h/ml. For ELF, the respective AUC0-24 values based on the mean and median concentrations were 224.1 and 176.3 ?g · h/ml, whereas for AM, the respective AUC0-24 values were 8,538 and 5,894 ?g · h/ml. Penetration ratios based on ELF and total plasma AUC0-24 values based on the mean and median concentrations were 13.8 and 10.9, respectively, whereas the ratios of the AM to total plasma concentrations based on the mean and median concentrations were 527 and 364, respectively. The sustained ELF and AM concentrations for 48 h after the third dose suggest that nafithromycin has the potential to be a useful agent for the treatment of lower respiratory tract infections. (This study has been registered at ClinicalTrials.gov under registration no. NCT02453529.).
Project description:BackgroundSecondary healthcare will remain pressured for some years, both because SARS-CoV-2 will circulate as a nosocomial pathogen, and owing to backlogs of patients awaiting delayed elective procedures. These stresses will drive the use of Outpatient Parenteral Antibiotic Therapy (OPAT), which will need to cover increasingly resistant Gram-negative opportunists. We evaluated the activity of ertapenem/zidebactam, proposed for 2 + 2 g q24h administration.Materials and methodsMICs were determined, by BSAC agar dilution, for 1632 Enterobacterales submitted to the UK national reference laboratory for investigation of antimicrobial resistance.ResultsOver 90% of Escherichia coli with AmpC, ESBLs, KPC, metallo- or OXA-48 carbapenemases were inhibited by ertapenem/zidebactam 1:1 at ertapenem's current 0.5 mg/L breakpoint. For other major Enterobacterales, the proportions inhibited by ertapenem/zidebactam 1:1 at 0.5 mg/L were mostly 65% to 90% but were lower for Klebsiella pneumoniae/oxytoca with metallo- or OXA-48 β-lactamases. However, animal studies support an 8 mg/L breakpoint for ertapenem/zidebactam, based on a shortened T>MIC being needed compared with ertapenem alone. On this basis ertapenem/zidebactam would count as active against 90%-100% of isolates in all groups except K. pneumoniae/oxytoca with MBLs (±OXA-48), where MICs and percent susceptibility vary substantially even with inocula within the BSAC acceptable range.ConclusionsErtapenem/zidebactam has a proposed once-daily regimen well suited to OPAT. Even on highly conservative breakpoint projections, it has potential against MDR E. coli, including metallo-carbapenemase producers. If trial data sustain the 8 mg/L breakpoint indicated by animal experiments, its potential will extend widely across infections due to ESBL-, AmpC- and carbapenemase-producing Enterobacterales.
Project description:WCK 5222 (cefepime-zidebactam, 2 g + 1g, every 8 h [q8h]) is in clinical development for the treatment of infections caused by carbapenem-resistant and multidrug-resistant (MDR) Gram-negative bacilli. We determined the in vitro susceptibility of 1,385 clinical isolates of non-carbapenem-susceptible Enterobacterales, MDR Pseudomonas aeruginosa (also non-carbapenem susceptible), Stenotrophomonas maltophilia, and Burkholderia spp. collected worldwide (49 countries) from 2014 to 2016 to cefepime-zidebactam (1:1 ratio), ceftazidime-avibactam, imipenem-relebactam, ceftolozane-tazobactam, and colistin using the CLSI broth microdilution method. Cefepime-zidebactam inhibited 98.5% of non-carbapenem-susceptible Enterobacterales (n = 1,018) at ≤8 μg/ml (provisional cefepime-zidebactam-susceptible MIC breakpoint). Against the subset of metallo-β-lactamase (MBL)-positive Enterobacterales (n = 214), cefepime-zidebactam inhibited 94.9% of isolates at ≤8 μg/ml. Further, it inhibited 99.6% of MDR P. aeruginosa (n = 262) isolates at ≤32 μg/ml (proposed cefepime-zidebactam-susceptible pharmacokinetic/pharmacodynamic MIC breakpoint), including all MBL-positive isolates (n = 94). Moreover, cefepime-zidebactam was active against the majority of isolates of Enterobacterales (≥95%) and P. aeruginosa (99%) that were not susceptible to ceftazidime-avibactam, ceftolozane-tazobactam, imipenem-relebactam, and colistin. Most isolates (99%) of S. maltophilia (n = 101; MIC50, 8 μg/ml; MIC90, 32 μg/ml) and Burkholderia spp. (n = 4; MIC range, 16 to 32 μg/ml) were also inhibited by cefepime-zidebactam at ≤32 μg/ml. The activity of cefepime-zidebactam against carbapenem-resistant Gram-negative bacteria is ascribed to its β-lactam enhancer mechanism of action (i.e., zidebactam binding to penicillin binding protein 2 [PBP2] and its universal stability to both serine β-lactamases and MBLs). The results from this study support the continued development of cefepime-zidebactam as a potential therapy for infections caused by Enterobacterales, P. aeruginosa, and other nonfermentative Gram-negative bacilli where resistance to marketed antimicrobial agents is a limiting factor.
Project description:Limited treatment options exist to combat infections caused by multidrug-resistant (MDR) Gram-negative bacteria possessing broad-spectrum β-lactamases. The design of novel β-lactamase inhibitors is of paramount importance. Here, three novel diazabicyclooctanes (DBOs), WCK 5153, zidebactam (WCK 5107), and WCK 4234 (compounds 1-3, respectively), were synthesized and biochemically characterized against clinically important bacteria. Compound 3 inhibited class A, C, and D β-lactamases with unprecedented k2/ K values against OXA carbapenemases. Compounds 1 and 2 acylated class A and C β-lactamses rapidly but not the tested OXAs. Compounds 1-3 formed highly stable acyl-complexes as demonstrated by mass spectrometry. Crystallography revealed that 1-3 complexed with KPC-2 adopted a "chair conformation" with the sulfate occupying the carboxylate binding region. The cefepime-2 and meropenem-3 combinations were effective in murine peritonitis and neutropenic lung infection models caused by MDR Acinetobacter baumannii. Compounds 1-3 are novel β-lactamase inhibitors that demonstate potent cross-class inhibition, and clinical studies targeting MDR infections are warranted.
Project description:The gyrA and gyrB genes of Chlamydia pneumoniae TW-183 were cloned, and their proteins were purified by use of a fusion system with a maltose-binding protein. The 50% inhibitory concentrations of garenoxacin, sparfloxacin, moxifloxacin, gatifloxacin, and levofloxacin were 10.1, 47.5, 39.6, 64.2, and 156.9 microg/ml, respectively, and the MICs against C. pneumoniae TW-183 were 0.008, 0.016, 0.063, 0.125, and 0.25 microg/ml, respectively.
Project description:Encapsulated Klebsiella pneumoniae has emerged as one of the most clinically relevant and more frequently encountered opportunistic pathogens in combat wounds as the result of nosocomial infection. In this report, we show that imipenem displayed potent activity against established K. pneumoniae biofilms under both static and flow conditions in vitro. Using a rabbit ear model, we also demonstrated that imipenem was highly effective against preformed K. pneumoniae biofilms in wounds.
Project description:Chlamydia trachomatis infections are the most prevalent sexually transmitted infections with potentially debilitating sequelae, such as infertility. Mouse models are generally used for vaccine development, to study the immune response and histopathology associated with Chlamydia infection. An important question regarding murine models is the in vivo identification of murine host genes responsible for the elimination of the murine and human Chlamydia strains. RNA sequencing of the Chlamydia muridarum infected BALB/c lung transcriptome revealed that several genes with direct antichlamydial functions were induced at the tissue level, including the already described and novel members of the murine interferon-inducible GTPase family, the CXCL chemokines CXCL9, CXCL11, immunoresponsive gene 1, nitric oxide synthase-2 (iNOS), and lipocalin-2. Indoleamine 2,3-dioxygenase 1-2 (IDO1-2) previously described potent antichlamydial host enzymes were also highly expressed in the infected murine lungs. This finding was novel, since IDO was considered as a unique human antichlamydial defense gene. Besides a lower level of epithelial cell positivity, immunohistochemistry showed that IDO1-2 proteins were expressed prominently in macrophages. Detection of the tryptophan degradation product kynurenine and the impact of IDO inhibition on Chlamydia muridarum growth proved that the IDO1-2 proteins were functionally active. IDO1-2 activity also increased in Chlamydia muridarum infected C57BL/6 lung tissues, indicating that this phenomenon is not mouse strain specific. Our study shows that the murine antichlamydial response includes a variety of highly up-regulated defense genes in vivo. Among these genes the antichlamydial effectors IDO1-2 were identified. The potential impact of murine IDO1-2 expression on Chlamydia propagation needs further investigation.
Project description:ObjectivesErtapenem has proven to be an effective antimicrobial; however, increasing enzyme-mediated resistance has been noted. Combination with zidebactam, a β-lactam enhancer, is restorative. Human-simulated regimens (HSRs) of ertapenem and zidebactam alone and in combination (WCK 6777; 2 g/2 g q24h) were assessed for efficacy against carbapenemase-producing Klebsiella pneumoniae (CP-KP) in the pneumonia model.MethodsInfected ICR mice were rendered neutropenic and exposed to various doses of ertapenem and zidebactam alone and in combination to develop the HSRs that were subsequently confirmed in additional pharmacokinetic studies. Twenty-one CP-KP (KPC or OXA-48-like producers) with WCK 6777 MICs of 1-8 mg/L were utilized. Mice were treated for 24 h with saline or HSRs of ertapenem, zidebactam and WCK 6777. Efficacy was defined as change in mean lung bacterial density relative to 0 h.ResultsConfirmatory pharmacokinetic analysis showed agreement between predicted human exposures (%fT>MIC) and those achieved in vivo for all three HSRs. The 0 h bacterial density across all isolates was 6.69 ± 0.31 log10 cfu/lungs. At 24 h, densities increased by 2.57 ± 0.50, 2.2 ± 0.60 and 2.05 ± 0.71 log10 cfu/lungs in the 24 h control, ertapenem HSR and zidebactam HSR groups, respectively. Overall, 18/21 of the isolates exposed to the WCK 6777 HSR displayed a killing profile that exceeded the translational benchmark for efficacy of a 1 log10 cfu reduction. Among the remaining three isolates, two displayed ∼0.5 log10 kill and stasis was observed in the third.ConclusionsHuman-simulated exposures of WCK 6777 demonstrated potent in vivo activity against CP-KP, including those with WCK 6777 MICs up to 8 mg/L.