Project description:The Large Tumor Suppressor 1 (LATS1) is a serine/threonine kinase and tumor suppressor found down-regulated in various human cancers. LATS1 has recently been identified as a central player of the emerging Hippo signaling pathway, which plays important roles in organ size control, tumorigenesis, and stem cell differentiation and renewal, etc. Although mounting evidence supports a role of LATS1 in tumor suppression and tumorigenesis, how LATS1 is regulated at the molecular level is not fully understood. Recently several positive regulators of LATS1 (Mst1/2, MOB1, Kibra, etc) have been identified but how LATS1 is negatively regulated is still largely unknown. We have recently identified Itch, a member of the NEDD4-like family E3 ubiquitin ligases, as a novel negative regulator of LATS1. However, whether other ubiquitin ligases modulate LATS1 stability and function is unclear. By screening many E3 ligases of the NEDD4-like family using over-expression and short-interference RNA knockdown approaches, we have identified WWP1 E3 ligase as another novel negative regulator of LATS1. We have provided in vitro and in vivo evidence that WWP1 is essential for LATS1 stability and negatively regulate LATS1 by promoting LATS1 degradation through polyubiquitination and the 26S proteasome pathway. Importantly, we also showed that degradation of LATS1 is critical in mediating WWP1-induced increased cell proliferation in breast cancer cells. Since WWP1 is an oncogene and LATS1 is a tumor suppressor gene in breast cancer, our studies provide a promising therapeutic strategy in which developed drugs targeting WWP1 cause activation of LATS1 in suppressing breast cancer cell growth.
Project description:Although dual EGFR/HER2 tyrosine kinase inhibitor lapatinib has provided effective clinical benefits for HER2-positive breast cancer patients, acquired resistance to this drug remains a major concern. Thus, the development of alternative therapeutic strategies is urgently needed for patients who failed lapatinib treatment. Proteasome inhibitors have been reported to possess high anti-tumor activity to breast cancer cells. Therefore, this study aims to examine whether and how proteasome inhibitor bortezomib can overcome lapatinib resistance. Treatments with several proteasome inhibitors, including Bortezomib, MG132, and proteasome inhibitor I (PSI), as well as the viabilities of both HER2-positive breast cancer cell lines and their lapatinib-resistant clones, were inhibited. Importantly, the expressions of ErbB family were downregulated at both transcriptional and translational levels. Also, our results further indicated that proteasome inhibitors decreased ErbB family expression through lysosomal degradation pathway in a heat shock protein 90 (HSP90)-dependent manner. In this study, our data supported a potential approach to overcome the acquired resistance of HER2-overexpressing breast cancer patients to lapatinib using proteasome inhibitors.
Project description:Nucleic acid aptamers hold promise as therapeutic tools for specific, tailored inhibition of protein targets with several advantages when compared to small molecules or antibodies. Nuclear WW domain containing E3 ubiquitin ligase 1 (WWP1) ubiquitin ligase poly-ubiquitinates Runt-related transcription factor 2 (Runx2), a key transcription factor associated with osteoblast differentiation. Since WWP1 and an adapter known as Schnurri-3 are negative regulators of osteoblast function, the disruption of this complex has the potential to increase bone deposition for osteoporosis therapy. Here, we develop new DNA aptamers that bind and inhibit WWP1 then investigate efficacy in an osteoblastic cell culture. DNA aptamers were selected against three different truncations of the HECT domain of WWP1. Aptamers which bind specifically to a C-lobe HECT domain truncation were observed to enrich during the selection procedure. One particular DNA aptamer termed C3A was further evaluated for its ability to bind WWP1 and inhibit its ubiquitination activity. C3A showed a low µM binding affinity to WWP1 and was observed to be a non-competitive inhibitor of WWP1 HECT ubiquitin ligase activity. When SaOS-2 osteoblastic cells were treated with C3A, partial localization to the nucleus was observed. The C3A aptamer was also demonstrated to specifically promote extracellular mineralization in cell culture experiments. The C3A aptamer has potential for further development as a novel osteoporosis therapeutic strategy. Our results demonstrate that aptamer-mediated inhibition of protein ubiquitination can be a novel therapeutic strategy.
Project description:Ovarian cancer refers to all sorts of cancerous growth that starts from the ovary. Dysregulation of long non-coding RNAs (lncRNAs) is associated with ovarian cancer development and progression. Cellular expression and localization of LINC00452 in ovarian cancer cells were detected by qPCR and FISH. The roles of LINC00452 in ovarian carcinogenesis were characterized by MTT, transwell and colony-formation assays in vitro as well as xenograft mouse model. The underlying mechanism was explored by microarray, RIP, Co-IP and luciferase reporter assays. This study identified a novel lncRNA LINC00452 being elevated in both ovarian cancer cells and tumor tissues in patients. Such aberrant expression of LINC00452 was negatively correlated with relapse-free survival of ovarian cancer patients. Overexpression of LINC00452 potentiated CaOV3 cell viability, migration and invasion in vitro as well as xenograft tumor growth in vivo. Evidence from the current study suggests that the carcinogenicity of LINC00452 is partially due to competitive sponging of miR-501-3p followed with release of repression on the ROCK1, a key effector in Rho signaling pathway. Irrespective of its miRNA sponge function, LINC00452 is capable of preventing ROCK1 protein from ubiquitin/proteasome-mediated degradation via their mutual physical interaction. Our study makes LINC00452 a potential therapeutic target for ovarian cancer.
Project description:As a highly organized system, endo-lysosomes play a crucial role in maintaining immune homeostasis. However, the mechanisms involved in regulating endo-lysosome progression and subsequent inflammatory responses are not fully understood. By screening 103 E3 ubiquitin ligases in regulating endo-lysosomal acidification, it is discovered that lysosomal RNF13 inhibits lysosome maturation and promotes inflammatory responses mediated by endosomal Toll-like receptors (TLRs) in macrophages. Mechanistically, RNF13 mediates K48-linked polyubiquitination of LAMP-1 at residue K128 for proteasomal degradation. Upon TLRs activation, LAMP-1 promotes lysosomes maturation, which accelerates lysosomal degradation of TLRs and reduces TLR signaling in macrophages. Furthermore, peripheral blood mononuclear cells (PBMCs) from patients with rheumatoid arthritis (RA) show increased RNF13 levels and decreased LAMP-1 expression. Accordingly, the immunosuppressive agent hydroxychloroquine (HCQ) can increase the polyubiquitination of RNF13. Taken together, the study establishes a linkage between proteasomal and lysosomal degradation mechanisms for the induction of appropriate innate immune response, and offers a promising approach for the treatment of inflammatory diseases by targeting intracellular TLRs.
Project description:Rationale: Previous studies have suggested that myocardial inflammation plays a critical role after ischemic myocardial infarction (MI); however, the underlying mechanisms still need to be fully elucidated. WW domain-containing ubiquitin E3 ligase 1 (WWP1) is considered as an important therapeutic target for cardiovascular diseases due to its crucial function in non-ischemic cardiomyopathy, though it remains unknown whether targeting WWP1 can alleviate myocardial inflammation and ischemic injury post-MI. Methods: Recombinant adeno-associated virus 9 (rAAV9)-cTnT-mediated WWP1 or Kruppel-like factor 15 (KLF15) gene transfer and a natural WWP1 inhibitor Indole-3-carbinol (I3C) were used to determine the WWP1 function in cardiomyocytes. Cardiac function, tissue injury, myocardial inflammation, and signaling changes in the left ventricular tissues were analyzed after MI. The mechanisms underlying WWP1 regulation of cardiomyocyte phenotypes in vitro were determined using the adenovirus system. Results: We found that WWP1 expression was up-regulated in cardiomyocytes located in the infarct border at the early phase of MI and in hypoxia-treated neonatal rat cardiac myocytes (NRCMs). Cardiomyocyte-specific WWP1 overexpression augmented cardiomyocyte apoptosis, increased infarct size and deteriorated cardiac function. In contrast, inhibition of WWP1 in cardiomyocytes mitigated MI-induced cardiac ischemic injury. Mechanistically, WWP1 triggered excessive cardiomyocyte inflammation after MI by targeting KLF15 to catalyze K48-linked polyubiquitination and degradation. Ultimately, WWP1-mediated degradation of KLF15 contributed to the up-regulation of p65 acetylation, and activated the inflammatory signaling of MAPK in ischemic myocardium and hypoxia-treated cardiomyocytes. Thus, targeting of WWP1 by I3C protected against cardiac dysfunction and remodeling after MI. Conclusions: Our study provides new insights into the previously unrecognized role of WWP1 in cardiomyocyte inflammation and progression of ischemic injury induced by MI. Our findings afford new therapeutic options for patients with ischemic cardiomyopathy.
Project description:Advanced breast cancers preferentially metastasize to bone where cells in the bone microenvironment produce factors that enhance breast cancer cell homing and growth. Expression of the ubiquitin E3 ligase WWP1 is increased in some breast cancers, but its role in bone metastasis has not been investigated. Here, we studied the effects of WWP1 and itch, its closest family member, on breast cancer bone metastasis. First, we immunostained a multi-tumor tissue microarray and a breast cancer tissue microarray and demonstrated that WWP1 and ITCH are expressed in some of breast cancer cases. We then knocked down WWP1 or itch in MDA-MB-231 breast cancer cells using shRNA and inoculated these cells and control cells into the left ventricle of athymic nude mice. Radiographs showed that mice given shWWP1 cells had more osteolytic lesions than mice given control MDA-MB-231 cells. Histologic analysis confirmed osteolysis and showed significantly increased tumor area in bone marrow of the mice. WWP1 knockdown did not affect cell growth, survival or osteoclastogenic potential, but markedly increased cell migration toward a CXCL12 gradient in vitro. Furthermore, WWP1 knockdown significantly reduced CXCL12-induced CXCR4 lysosomal trafficking and degradation. In contrast, itch knockdown had no effect on MDA-MB-231 cell bone metastasis. Taken together, these findings demonstrate that WWP1 negatively regulates cell migration to CXCL12 by limiting CXCR4 degradation to promote breast cancer metastasis to bone and highlight the potential utility of WWP1 as a prognostic indicator for breast cancer bone metastasis.
Project description:The nuclear factor κB (NFκB) transcription factor plays critical roles in inflammation and immunity. The dysregulation of NFκB is associated with inflammatory and autoimmune diseases and cancer. NFκB activation is negatively regulated by the ubiquitin-dependent proteasomal degradation pathway. In the present review, we discuss recent advances in our understanding of how ubiquitin ligases regulate the NFκB degradation pathway.
Project description:The E3 ubiquitin ligase RING finger protein 115 (RNF115), also known as breast cancer-associated gene 2 (BCA2), has previously been reported to be overexpressed in estrogen receptor ? (ER?)-positive breast tumors and to promote breast cell proliferation; however, its mechanism is unknown. In this study, we demonstrated that silencing of BCA2 by small interfering RNAs (siRNAs) in two ER?-positive breast cancer cell lines, MCF-7 and T47D, decreases cell proliferation and increases the protein levels of the cyclin-dependent kinase inhibitor p21Waf/Cip1. The protein stability of p21 was negatively regulated by BCA2. BCA2 directly interacts with p21 and promotes p21 ubiquitination and proteasomal degradation. Knockdown of p21 partially rescues the cell growth arrest induced by the BCA2 siRNA. These results suggest that BCA2 promotes ER?-positive breast cancer cell proliferation at least partially through downregulating the expression of p21.
Project description:?-Synuclein is an abundant brain protein that binds to lipid membranes and is involved in the recycling of presynaptic vesicles. In Parkinson disease, ?-synuclein accumulates in intraneuronal inclusions often containing ubiquitin chains. Here we show that the ubiquitin ligase Nedd4, which functions in the endosomal-lysosomal pathway, robustly ubiquitinates ?-synuclein, unlike ligases previously implicated in its degradation. Purified Nedd4 recognizes the carboxyl terminus of ?-synuclein (residues 120-133) and attaches K63-linked ubiquitin chains. In human cells, Nedd4 overexpression enhances ?-synuclein ubiquitination and clearance by a lysosomal process requiring components of the endosomal-sorting complex required for transport. Conversely, Nedd4 down-regulation increases ?-synuclein content. In yeast, disruption of the Nedd4 ortholog Rsp5p decreases ?-synuclein degradation and enhances inclusion formation and ?-synuclein toxicity. In human brains, Nedd4 is present in pigmented neurons and is expressed especially strongly in neurons containing Lewy bodies. Thus, ubiquitination by Nedd4 targets ?-synuclein to the endosomal-lysosomal pathway and, by reducing ?-synuclein content, may help protect against the pathogenesis of Parkinson disease and other ?-synucleinopathies.