Unknown

Dataset Information

0

Long-read whole-genome methylation patterning using enzymatic base conversion and nanopore sequencing.


ABSTRACT: Long-read whole-genome sequencing analysis of DNA methylation would provide useful information on the chromosomal context of gene expression regulation. Here we describe the development of a method that improves the read length generated by using the bisulfite-sequencing-based approach. In this method, we combined recently developed enzymatic base conversion, where an unmethylated cytosine (C) should be converted to thymine (T), with nanopore sequencing. After methylation-sensitive base conversion, the sequencing library was constructed using long-range polymerase chain reaction. This type of analysis is possible using a minimum of 1 ng genomic DNA, and an N50 read length of 3.4-7.6 kb is achieved. To analyze the produced data, which contained a substantial number of base mismatches due to sequence conversion and an inaccurate base read of the nanopore sequencing, a new analytical pipeline was constructed. To demonstrate the performance of long-read methylation sequencing, breast cancer cell lines and clinical specimens were subjected to analysis, which revealed the chromosomal methylation context of key cancer-related genes, allele-specific methylated genes, and repetitive or deletion regions. This method should convert the intractable specimens for which the amount of available genomic DNA is limited to the tractable targets.

SUBMITTER: Sakamoto Y 

PROVIDER: S-EPMC8373077 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8764290 | biostudies-literature
| S-EPMC6841976 | biostudies-literature
| S-EPMC7568507 | biostudies-literature
| S-EPMC6520541 | biostudies-literature
| S-EPMC5426553 | biostudies-literature
| S-EPMC6486641 | biostudies-literature
2020-06-18 | GSE151984 | GEO
| S-EPMC8074342 | biostudies-literature
| S-EPMC6966772 | biostudies-literature
| S-EPMC6360650 | biostudies-literature