Project description:The response to the COVID-19 pandemic in the U.S prompted abrupt and dramatic changes to social contact patterns. Monitoring changing social behavior is essential to provide reliable input data for mechanistic models of infectious disease, which have been increasingly used to support public health policy to mitigate the impacts of the pandemic. While some studies have reported on changing contact patterns throughout the pandemic, few have reported differences in contact patterns among key demographic groups and none have reported nationally representative estimates. We conducted a national probability survey of US households and collected information on social contact patterns during two time periods: August-December 2020 (before widespread vaccine availability) and March-April 2021 (during national vaccine rollout). Overall, contact rates in Spring 2021 were similar to those in Fall 2020, with most contacts reported at work. Persons identifying as non-White, non-Black, non-Asian, and non-Hispanic reported high numbers of contacts relative to other racial and ethnic groups. Contact rates were highest in those reporting occupations in retail, hospitality and food service, and transportation. Those testing positive for SARS-CoV-2 antibodies reported a higher number of daily contacts than those who were seronegative. Our findings provide evidence for differences in social behavior among demographic groups, highlighting the profound disparities that have become the hallmark of the COVID-19 pandemic.
Project description:We characterized COVID-19 breakthrough cases admitted to a single center in Florida. With the emergence of delta variant, an increased number of hospitalizations was seen due to breakthrough infections. These patients were older and more likely to have comorbidities. Preventive measures should be maintained even after vaccination.
Project description:Some variants of SARS-CoV-2 are associated with increased transmissibility, increased disease severity or decreased vaccine effectiveness (VE). In this population-based cohort study (n = 4,204,859), the Delta variant was identified in 5,430 (0.13%) individuals, of whom 84 were admitted to hospital. VE against laboratory confirmed infection with the Delta variant was 22.4% among partly vaccinated (95% confidence interval (CI): 17.0-27.4) and 64.6% (95% CI: 60.6-68.2) among fully vaccinated individuals, compared with 54.5% (95% CI: 50.4-58.3) and 84.4% (95%CI: 81.8-86.5) against the Alpha variant.
Project description:This report provides a descriptive analysis of the African swine fever (ASF) Genotype II epidemic in the affected Member States in the EU and two neighbouring countries for the period from 1 September 2020 to 31 August 2021. ASF continued to spread in wild boar in the EU, it entered Germany in September 2020, while Belgium became free from ASF in October 2020. No ASF outbreaks in domestic pigs nor cases in wild boar have been reported in Greece since February 2020. In the Baltic States, overall, there has been a declining trend in proportions of polymerase chain reaction (PCR)-positive samples from wild boar carcasses in the last few years. In the other countries, the proportions of PCR-positive wild boar carcasses remained high, indicating continuing spread of the disease. A systematic literature review revealed that the risk factors most frequently significantly associated with ASF in domestic pigs were pig density, low levels of biosecurity and socio-economic factors. For wild boar, most significant risk factors were related to habitat, socio-economic factors and wild boar management. The effectiveness of different control options in the so-named white zones, areas where wild boar densities have been drastically reduced to avoid further spread of ASF after a new introduction, was assessed with a stochastic model. Important findings were that establishing a white zone is much more challenging when the area of ASF incursion is adjacent to an area where limited control measures are in place. Very stringent wild boar population reduction measures in the white zone are key to success. The white zone needs to be far enough away from the affected core area so that the population can be reduced in time before the disease arrives and the timing of this will depend on the wild boar density and the required population reduction target in the white zone. Finally, establishing a proactive white zone along the demarcation line of an affected area requires higher culling efforts, but has a higher chance of success to stop the spread of the disease than establishing reactive white zones after the disease has already entered in the area.