Project description:Epstein-Barr virus (EBV) is a human herpesvirus that causes acute infectious mononucleosis and is associated with cancer and autoimmune disease. While many studies have been performed examining acute disease in adults following primary infection, little is known about the virological and immunological events during EBV's lengthy 6 week incubation period owing to the challenge of collecting samples from this stage of infection. We conducted a prospective study in college students with special emphasis on frequent screening to capture blood and oral wash samples during the incubation period. Here we describe the viral dissemination and immune response in the 6 weeks prior to onset of acute infectious mononucleosis symptoms. While virus is presumed to be present in the oral cavity from time of transmission, we did not detect viral genomes in the oral wash until one week before symptom onset, at which time viral genomes were present in high copy numbers, suggesting loss of initial viral replication control. In contrast, using a sensitive nested PCR method, we detected viral genomes at low levels in blood about 3 weeks before symptoms. However, high levels of EBV in the blood were only observed close to symptom onset-coincident with or just after increased viral detection in the oral cavity. These data imply that B cells are the major reservoir of virus in the oral cavity prior to infectious mononucleosis. The early presence of viral genomes in the blood, even at low levels, correlated with a striking decrease in the number of circulating plasmacytoid dendritic cells well before symptom onset, which remained depressed throughout convalescence. On the other hand, natural killer cells expanded only after symptom onset. Likewise, CD4+ Foxp3+ regulatory T cells decreased two fold, but only after symptom onset. We observed no substantial virus specific CD8 T cell expansion during the incubation period, although polyclonal CD8 activation was detected in concert with viral genomes increasing in the blood and oral cavity, possibly due to a systemic type I interferon response. This study provides the first description of events during the incubation period of natural EBV infection in humans and definitive data upon which to formulate theories of viral control and disease pathogenesis.
Project description:Epstein-Barr virus (EBV) infection often occurs in early childhood and is asymptomatic. However, if delayed until adolescence, primary infection may manifest as acute infectious mononucleosis (AIM), a febrile illness characterised by global CD8+ T-cell lymphocytosis, much of it reflecting a huge expansion of activated EBV-specific CD8+ T-cells. While the events of AIM have been intensely studied, little is known about how these relate to asymptomatic primary infection. Here Gambian children (14-18 months old, an age at which many acquire the virus) were followed for the ensuing six months, monitoring circulating EBV loads, antibody status against virus capsid antigen (VCA) and both total and virus-specific CD8+ T-cell numbers. Many children were IgG anti-VCA-positive and, though no longer IgM-positive, still retained high virus loads comparable to AIM patients and had detectable EBV-specific T-cells, some still expressing activation markers. Virus loads and the frequency/activation status of specific T-cells decreased over time, consistent with resolution of a relatively recent primary infection. Six children with similarly high EBV loads were IgM anti-VCA-positive, indicating very recent infection. In three of these donors with HLA types allowing MHC-tetramer analysis, highly activated EBV-specific T-cells were detectable in the blood with one individual epitope response reaching 15% of all CD8+ T-cells. That response was culled and the cells lost activation markers over time, just as seen in AIM. However, unlike AIM, these events occurred without marked expansion of total CD8+ numbers. Thus asymptomatic EBV infection in children elicits a virus-specific CD8+ T-cell response that can control the infection without over-expansion; conversely, in AIM it appears the CD8 over-expansion, rather than virus load per se, is the cause of disease symptoms.
Project description:Over 90% of the world's population is persistently infected with Epstein-Barr virus. While EBV does not cause disease in most individuals, it is the common cause of acute infectious mononucleosis (AIM) and has been associated with several cancers and autoimmune diseases, highlighting a need for a preventive vaccine. At present, very few primary, circulating EBV genomes have been sequenced directly from infected individuals. While low levels of diversity and low viral evolution rates have been predicted for double-stranded DNA (dsDNA) viruses, recent studies have demonstrated appreciable diversity in common dsDNA pathogens (e.g., cytomegalovirus). Here, we report 40 full-length EBV genome sequences obtained from matched oral wash and B cell fractions from a cohort of 10 AIM patients. Both intra- and interpatient diversity were observed across the length of the entire viral genome. Diversity was most pronounced in viral genes required for establishing latent infection and persistence, with appreciable levels of diversity also detected in structural genes, including envelope glycoproteins. Interestingly, intrapatient diversity declined significantly over time (P < 0.01), and this was particularly evident on comparison of viral genomes sequenced from B cell fractions in early primary infection and convalescence (P < 0.001). B cell-associated viral genomes were observed to converge, becoming nearly identical to the B95.8 reference genome over time (Spearman rank-order correlation test; r = -0.5589, P = 0.0264). The reduction in diversity was most marked in the EBV latency genes. In summary, our data suggest independent convergence of diverse viral genome sequences toward a reference-like strain within a relatively short period following primary EBV infection.IMPORTANCE Identification of viral proteins with low variability and high immunogenicity is important for the development of a protective vaccine. Knowledge of genome diversity within circulating viral populations is a key step in this process, as is the expansion of intrahost genomic variation during infection. We report full-length EBV genomes sequenced from the blood and oral wash of 10 individuals early in primary infection and during convalescence. Our data demonstrate considerable diversity within the pool of circulating EBV strains, as well as within individual patients. Overall viral diversity decreased from early to persistent infection, particularly in latently infected B cells, which serve as the viral reservoir. Reduction in B cell-associated viral genome diversity coincided with a convergence toward a reference-like EBV genotype. Greater convergence positively correlated with time after infection, suggesting that the reference-like genome is the result of selection.
Project description:BackgroundInfectious mononucleosis (IM) is a common adverse presentation of primary infection with Epstein-Barr virus (EBV) in adolescence and later, but is rarely recognized in early childhood where primary EBV infection commonly occurs. It is not known what triggers IM, and also not why IM risk upon primary EBV infection (IM attack rate) seemingly varies between children and adolescents. IM symptoms may be severe and persist for a long time. IM also markedly elevates the risk of Hodgkin lymphoma and multiple sclerosis for unknown reasons. The way IM occurrence depends on age and sex is incompletely described and hard to interpret etiologically, because it depends on three quantities that are not readily observable: the prevalence of EBV-naϊve persons, the hazard rate of seroconverting and the attack rate, i.e. the fraction of primary EBV infections that is accompanied by IM. We therefore aimed to provide these quantities indirectly, to obtain epidemiologically interpretable measures of the dynamics of IM occurrence to provide etiological clues.Methods and findingsWe used joint modeling of EBV prevalence and IM occurrence data to provide detailed sex- and age-specific EBV infection rates and IM attack rates and derivatives thereof for a target population of all Danes age 0-29 years in 2006-2011. We demonstrate for the first time that IM attack rates increase dramatically rather precisely in conjunction to typical ages of puberty onset. The shape of the seroconversion hazard rate for children and teenagers confirmed a priori expectations and underlined the importance of what happens at age 0-2 years. The cumulative risk of IM before age 30 years was 13.3% for males and 22.4% for females. IM is likely to become more common through delaying EBV infection in years to come.ConclusionsThe change in attack rate at typical ages of puberty onset suggests that the immunologic response to EBV drastically changes over a relatively short age-span. We speculate that these changes are an integrated part of normal sexual maturation. Our findings may inform further etiologic research into EBV-related diseases and vaccine design. Our methodology is applicable to the epidemiological study of any infectious agent that establishes a persistent infection in the host and the sequelae thereof.
Project description:Epstein-Barr virus (EBV) infection of human primary resting B lymphocytes (RBLs) leads to the establishment of lymphoblastoid cell lines (LCLs) that can grow indefinitely in vitro EBV transforms RBLs through the expression of viral latency genes, and these genes alter host transcription programs. To globally measure the transcriptome changes during EBV transformation, primary human resting B lymphocytes (RBLs) were infected with B95.8 EBV for 0, 2, 4, 7, 14, 21, and 28 days, and poly(A) plus RNAs were analyzed by transcriptome sequencing (RNA-seq). Analyses of variance (ANOVAs) found 3,669 protein-coding genes that were differentially expressed (false-discovery rate [FDR] < 0.01). Ninety-four percent of LCL genes that are essential for LCL growth and survival were differentially expressed. Pathway analyses identified a significant enrichment of pathways involved in cell proliferation, DNA repair, metabolism, and antiviral responses. RNA-seq also identified long noncoding RNAs (lncRNAs) differentially expressed during EBV infection. Clustered regularly interspaced short palindromic repeat (CRISPR) interference (CRISPRi) and CRISPR activation (CRISPRa) found that CYTOR and NORAD lncRNAs were important for LCL growth. During EBV infection, type III EBV latency genes were expressed rapidly after infection. Immediately after LCL establishment, EBV lytic genes were also expressed in LCLs, and ∼4% of the LCLs express gp350. Chromatin immune precipitation followed by deep sequencing (ChIP-seq) and POLR2A chromatin interaction analysis followed by paired-end tag sequencing (ChIA-PET) data linked EBV enhancers to 90% of EBV-regulated genes. Many genes were linked to enhancers occupied by multiple EBNAs or NF-κB subunits. Incorporating these assays, we generated a comprehensive EBV regulome in LCLs.IMPORTANCE Epstein-Barr virus (EBV) immortalization of resting B lymphocytes (RBLs) is a useful model system to study EBV oncogenesis. By incorporating transcriptome sequencing (RNA-seq), chromatin immune precipitation followed by deep sequencing (ChIP-seq), chromatin interaction analysis followed by paired-end tag sequencing (ChIA-PET), and genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screen, we identified key pathways that EBV usurps to enable B cell growth and transformation. Multiple layers of regulation could be achieved by cooperations between multiple EBV transcription factors binding to the same enhancers. EBV manipulated the expression of most cell genes essential for lymphoblastoid cell line (LCL) growth and survival. In addition to proteins, long noncoding RNAs (lncRNAs) regulated by EBV also contributed to LCL growth and survival. The data presented in this paper not only allowed us to further define the molecular pathogenesis of EBV but also serve as a useful resource to the EBV research community.
Project description:EBV and Helicobacter pylori (H. pylori) cause highly prevalent persistent infections as early as in childhood. Both pathogens are associated with gastric carcinogenesis. H. pylori interferes with iron metabolism, enhancing the synthesis of acute-phase proteins hepcidin, C-reactive protein (CRP), and α-1 glycoprotein (AGP), but we do not know whether EBV does the same. In this study, we correlated the EBV antibody levels and the serum levels of hepcidin, CRP, and AGP in 145 children from boarding schools in Mexico City. We found that children IgG positive to EBV antigens (VCA, EBNA1, and EA) presented hepcidin, AGP, and CRP levels higher than uninfected children. Hepcidin and AGP remained high in children solely infected with EBV, while CRP was only significantly high in coinfected children. We observed positive correlations between hepcidin and EBV IgG antibodies (p < 0.5). Using the TCGA gastric cancer database, we also observed an association between EBV and hepcidin upregulation. The TCGA database also allowed us to analyze the two important pathways controlling hepcidin expression, BMP-SMAD and IL-1β/IL-6. We observed only the IL-1β/IL-6-dependent inflammatory pathway being significantly associated with EBV infection. We showed here for the first time an association between EBV and enhanced levels of hepcidin. Further studies should consider EBV when evaluating iron metabolism and anemia, and whether in the long run this is an important mechanism of undernourishment and EBV gastric carcinogenesis.
Project description:Epstein-Barr virus (EBV), originally discovered through its association with Burkitt lymphoma, is now aetiologically linked to a remarkably wide range of lymphoproliferative lesions and malignant lymphomas of B-, T- and NK-cell origin. Some occur as rare accidents of virus persistence in the B lymphoid system, while others arise as a result of viral entry into unnatural target cells. The early finding that EBV is a potent B-cell growth transforming agent hinted at a simple oncogenic mechanism by which this virus could promote lymphomagenesis. In reality, the pathogenesis of EBV-associated lymphomas involves a complex interplay between different patterns of viral gene expression and cellular genetic changes. Here we review recent developments in our understanding of EBV-associated lymphomagenesis in both the immunocompetent and immunocompromised host.This article is part of the themed issue 'Human oncogenic viruses'.
Project description:Backgrounds & aimsEpstein-Barr virus (EBV) infection occurs commonly in children and may cause acute infectious mononucleosis (AIM) and various malignant diseases. Host immune responses are key players in the resistance to EBV infection. We here assessed the immunological events and laboratory indicators of EBV infection, as well as determined the clinical usefulness of evaluating the severity and efficacy of antiviral therapy in AIM patients.MethodsWe enrolled 88 children with EBV infection. The immune environment was defined by immunological events such as frequencies of lymphocyte subsets, phenotypes of T cells, and their ability to secrete cytokines, and so on. This environment was analyzed in EBV-infected children with different viral loads and in children in different phases of infectious mononucleosis (IM) from disease onset to convalescence.ResultsChildren with AIM had higher frequencies of CD3+ T and CD8+ T cells, but lower frequencies of CD4+ T cells and CD19+ B cells. In these children, the expression of CD62L was lower and that of CTLA-4 and PD-1 was higher on T cells. EBV exposure induced granzyme B expression, but reduced IFN-γ secretion, by CD8+ T cells, whereas NK cells exhibited reduced granzyme B expression and increased IFN-γ secretion. The frequency of CD8+ T cells was positively correlated with the EBV DNA load, whereas the frequencies of CD4+ T cells and B cells were negatively correlated. During the convalescent phase of IM, CD8+ T cell frequency and CD62L expression on T cells were restored. Moreover, patient serum levels of IL-4, IL-6, IL-10, and IFN-γ were considerably lower throughout the convalescent phase than throughout the acute phase.ConclusionRobust expansion of CD8+ T cells, accompanied by CD62L downregulation, PD-1 and CTLA-4 upregulation on T cells, enhanced granzyme B production, and impaired IFN-γ secretion, is a typical characteristic of immunological events in children with AIM. Noncytolytic and cytolytic effector functions of CD8+ T cells are regulated in an oscillatory manner. Furthermore, the AST level, number of CD8+ T cells, and CD62L expression on T cells may act as markers related to IM severity and the effectiveness of antiviral treatment.
Project description:The Epstein-Barr virus (EBV) is associated with lymphomas and carcinomas. For some of these, the adoptive transfer of EBV specific T cells has been therapeutically explored, with clinical success. In order to avoid naturally occurring EBV specific autologous T cell selection from every patient, the transgenic expression of latent and early lytic viral antigen specific T cell receptors (TCRs) to redirect T cells, to target the respective tumors, is being developed. Recent evidence suggests that not only TCRs against transforming latent EBV antigens, but also against early lytic viral gene products, might be protective for the control of EBV infection and associated oncogenesis. At the same time, these approaches might be more selective and cause less collateral damage than targeting general B cell markers with chimeric antigen receptors (CARs). Thus, EBV specific TCR transgenic T cells constitute a promising therapeutic strategy against EBV associated malignancies.
Project description:The KT tumor is a transplantable strain of a human Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC), established in severe combined immunodeficiency (SCID) mice, with which the cytokine expression of EBVaGC can be investigated without interference from the infiltrating lymphocytes. As a part of a high-density oligonucleotide array (GeneChip) analysis of EBVaGC, the interleukin-1beta (IL-1beta) gene was the only cytokine gene that showed markedly higher expression in the KT tumor cells than in two tumor strains of EBV-negative GC. The results were confirmed by Northern blotting, Western blotting, and enzyme-linked immunosorbent assay. Furthermore, we demonstrated a positive signal for IL-1beta mRNA in the carcinoma cells of a surgically resected EBVaGC, but not in EBV-negative GC, by in situ hybridization. In vitro, IL-1beta increased the cell growth of a GC cell line, TMK1. Thus, IL-1beta may act as an autocrine growth factor in EBVaGC.