Population pharmacokinetics of belantamab mafodotin, a BCMA-targeting agent in patients with relapsed/refractory multiple myeloma.
Ontology highlight
ABSTRACT: Belantamab mafodotin (belamaf) is an antibody-drug conjugate (ADC) targeting B-cell maturation antigen (BCMA). Nonlinear mixed-effects models were developed to characterize the population pharmacokinetics (PopPK) of ADC, total monoclonal antibody (mAb), and cysteine-maleimidocaproyl-MMAF (cys-mcMMAF) after 0.03-4.6 mg/kg dosing every 3 weeks in heavily pretreated patients with relapsed/refractory multiple myeloma (RRMM; DREAMM-1, n = 73; DREAMM-2, n = 218). Sequential modeling methodology was used. Individual post hoc parameter estimates from the final ADC model were used to develop total mAb and cys-mcMMAF models. Formal covariate selection used a modified stepwise forward inclusion method with backward elimination. A linear, two-compartment PopPK model with a time-varying clearance (CL) described ADC PK. Initial ADC typical value for CL for a DREAMM-2 patient was 0.936 L/day with a half-life of 11.5 days, over time CL was reduced by 28% resulting in a half-life of 14.3 days. Time to 50% maximal CL change was ~ 50 days. Baseline soluble BCMA (sBCMA), immunoglobulin (IgG), albumin, and bodyweight impacted ADC CL. Cys-mcMMAF concentrations were described with a linear two-compartment model linked to ADC; input rate was governed by deconjugation/intracellular proteolytic degradation of ADC represented by an exponentially decreasing MMAF:mAb (drug antibody ratio [DAR]) after each dose. Time to 50% DAR reduction was 10.3 days. Baseline sBCMA and IgG impacted cys-mcMMAF central volume of distribution. In conclusion, ADC, total mAb, and cys-mcMMAF concentration-time profiles in RRMM were well-described by PopPK models, and exposure was most strongly impacted by disease-related characteristics.
SUBMITTER: Rathi C
PROVIDER: S-EPMC8376139 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA