Project description:A 70-year-old woman was admitted to our hospital complaining of shortness of breath. She was diagnosed with acute decompensated heart failure due to left ventricular dysfunction. Her symptoms began to improve with standard therapy for heart failure with diuretics, noninvasive pressure ventilation, and inotropes, but paroxysmal atrial fibrillation and premature ventricular contractions (PVCs) occurred. After treatment with amiodarone, the number of PVCs decreased, and the left ventricular wall motion gradually improved. However, on day 28, ventricular fibrillation and cardiopulmonary arrest occurred suddenly, and she could not be resuscitated. She was diagnosed with giant cell myocarditis via an autopsy. The autopsy revealed diffuse inflammatory cells that comprised giant cells and eosinophils as well as cellular degeneration and necrosis. <Learning objective: We herein report a case of sudden cardiac death due to giant cell myocarditis diagnosed at an autopsy.>.
Project description:Cardiac dysfunction is a common phenotypic manifestation of primary mitochondrial disease with multiple nuclear and mitochondrial DNA pathogenic variants as a cause, including disorders of mitochondrial translation. To date, five patients have been described with pathogenic variants in MRPL44, encoding the ml44 protein which is part of the large subunit of the mitochondrial ribosome (mitoribosome). Three presented as infants with hypertrophic cardiomyopathy, mild lactic acidosis, and easy fatigue and muscle weakness, whereas two presented in adolescence with myopathy and neurological symptoms. We describe two infants who presented with cardiomyopathy from the neonatal period, failure to thrive, hypoglycemia and in one infant lactic acidosis. A decompensation of the cardiac function in the first year resulted in demise. Exome sequencing identified compound heterozygous variants in the MRPL44 gene including the known pathogenic variant c.467 T > G and two novel pathogenic variants. We document a combined respiratory chain enzyme deficiency with emphasis on complex I and IV, affecting heart muscle tissue more than skeletal muscle or fibroblasts. We show this to be caused by reduced mitochondrial DNA encoded protein synthesis affecting all subunits, and resulting in dysfunction of complex I and IV assembly. The degree of oxidative phosphorylation dysfunction correlated with the impairment of mitochondrial protein synthesis due to different pathogenic variants. These functional studies allow for improved understanding of the pathogenesis of MRPL44-associated mitochondrial disorder.
Project description:Right ventricular outflow tract (RVOT) aneurysm is a rare cause of RVOT ventricular tachycardia (RVOT-VT). We present a very unusual case of RVOT-VT due to an RVOT aneurysm diagnosed by cardiovascular magnetic resonance imaging.
Project description:Mutations in cardiac ryanodine receptor (RyR2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most CPVT RyR2 mutations characterized are gain-of-function (GOF), indicating enhanced RyR2 function as a major cause of CPVT. Loss-of-function (LOF) RyR2 mutations have also been identified and are linked to a distinct entity of cardiac arrhythmia termed RyR2 Ca2+ release deficiency syndrome (CRDS). Exercise stress testing (EST) is routinely used to diagnose CPVT, but it is ineffective for CRDS. There is currently no effective diagnostic tool for CRDS in humans. An alternative strategy to assess the risk for CRDS is to directly determine the functional impact of the associated RyR2 mutations. To this end, we have functionally screened 18 RyR2 mutations that are associated with idiopathic ventricular fibrillation (IVF) or sudden death. We found two additional RyR2 LOF mutations E4146K and G4935R. The E4146K mutation markedly suppressed caffeine activation of RyR2 and abolished store overload induced Ca2+ release (SOICR) in human embryonic kidney 293 (HEK293) cells. E4146K also severely reduced cytosolic Ca2+ activation and abolished luminal Ca2+ activation of single RyR2 channels. The G4935R mutation completely abolished caffeine activation of and [3H]ryanodine binding to RyR2. Co-expression studies showed that the G4935R mutation exerted dominant negative impact on the RyR2 wildtype (WT) channel. Interestingly, the RyR2-G4935R mutant carrier had a negative EST, and the E4146K carrier had a family history of sudden death during sleep, which are different from phenotypes of typical CPVT. Thus, our data further support the link between RyR2 LOF and a new entity of cardiac arrhythmias distinct from CPVT.
Project description:The risk of having atrial fibrillation (AF) is associated with alcohol intake. However, it is not clear whether sudden cardiac arrest (SCA) and ventricular arrhythmia (VA) including ventricular tachycardia, flutter, or fibrillation have similar associations with alcohol. We aimed to evaluate the association of alcohol intake with all-cause death, new-onset AF, VA, and SCA using single cohort with a sufficient sample size. A total of 3,990,373 people without a prior history of AF, VAs, or SCA was enrolled in this study based on nationwide health check-up in 2009. We classified the participants into four groups according to weekly alcohol consumption, and evaluated the association of alcohol consumption with each outcome. We observed a significant association between mild (hazard ratio [HR] = 0.826; 95% confidence interval [CI] = 0.815-0.838) to moderate (HR = 0.930; 95% CI = 0.912-0.947) drinking with decreased risk of all-cause mortality. However heavy drinking (HR = 1.108; 95% CI = 1.087-1.129) was associated with increased all-cause death. The risk of new-onset AF was significantly associated with moderate (HR = 1.129; 95% CI = 1.097-1.161) and heavy (HR = 1.298; 95% CI = 1.261-1.337) drinking. However, the risk of SCA showed negative association with all degrees of alcohol intake: 20% (HR = 0.803; 95% CI = 0.769-0.839), 15% (HR = 0.853; 95% CI = 0.806-0.902), and 8% (HR = 0.918; 95% CI = 0.866-0.974) lower risk for mild, moderate, and heavy drinkers, respectively. Mild drinking was associated with reduced risk of VA with moderate and heavy drinking having no associations. In conclusion, the association between alcohol and various outcomes in this study were heterogeneous. Alcohol might have different influences on various cardiac disorders.
Project description:BackgroundPotentially lethal and heritable cardiomyopathies and cardiac channelopathies are caused by heterogeneous autosomal dominant mutations in over 50 distinct genes, and multiple genes are responsible for a given disease. Clinical genetic tests are available for several of the inherited cardiac diseases and clinical investigations guide which test to order. This study describes a family with cardiac disease in which marked clinical diversity exists. In the absence of a unified clinical diagnosis, we used exome sequencing to identify a causal mutation.MethodsClinical evaluation of family members was performed, including physical examination, electrocardiography, 2D transthoracic echocardiography and review of autopsy records. Exome sequencing was performed on a clinically affected individual and co-segregation studies and haplotype analysis were performed to further confirm pathogenicity.ResultsClinically affected members showed marked cardiac phenotype heterogeneity. While some individuals were asymptomatic, other presentations included left ventricular non-compaction, a resuscitated cardiac arrest due to idiopathic ventricular fibrillation, dilated cardiomyopathy, and sudden unexplained death. Whole exome sequencing identified an Ala119Thr mutation in the alpha-actinin-2 (ACTN2) gene that segregated with disease. Haplotype analysis showed that this mutation segregated with an identical haplotype in a second, previously described family with clinically diverse cardiac disease, and is likely inherited from a common ancestor.ConclusionsMutations in the ACTN2 gene can be responsible for marked cardiac phenotype heterogeneity in families. The diverse mechanistic roles of ACTN2 in the cardiac Z-disc may explain this heterogeneous clinical presentation. Exome sequencing is a useful adjunct to cardiac genetic testing in families with mixed clinical presentations.
Project description:Dystonia (DYT) is a heterogeneous neurological disorder, and there are many types of DYT depending on the responsible genes. DYT11 is an autosomal dominant DYT caused by functional variants in the SGCE gene. We examined a Japanese patient with myoclonic dystonia. By using exome analysis, we identified a rare variant in the SGCE gene, NM_003919.3: c.304C > T [Arg102*], in this patient. Therefore, this patient has been molecularly diagnosed with DYT11. By Sanger sequencing, we confirmed that this variant was paternally inherited in this patient. By allele-specific PCR, we confirmed that the maternally inherited normal allele of SGCE was silenced, and only the paternally inherited variant allele was expressed in this patient. Despite the pathogenicity, identical variants have been recurrently reported in eight independent families from different ethnicities, suggesting recurrent mutations at this mutational hotspot in SGCE.
Project description:Different forms of ventricular arrhythmias have been linked to mutations in the cardiac ryanodine receptor (RyR)2, but the molecular basis for this phenotypic heterogeneity is unknown. We have recently demonstrated that an enhanced sensitivity to luminal Ca(2+) and an increased propensity for spontaneous Ca(2+) release or store-overload-induced Ca(2+) release (SOICR) are common defects of RyR2 mutations associated with catecholaminergic polymorphic or bidirectional ventricular tachycardia. Here, we investigated the properties of a unique RyR2 mutation associated with catecholaminergic idiopathic ventricular fibrillation, A4860G. Single-channel analyses revealed that, unlike all other disease-linked RyR2 mutations characterized previously, the A4860G mutation diminished the response of RyR2 to activation by luminal Ca(2+), but had little effect on the sensitivity of the channel to activation by cytosolic Ca(2+). This specific impact of the A4860G mutation indicates that the luminal Ca(2+) activation of RyR2 is distinct from its cytosolic Ca(2+) activation. Stable, inducible HEK293 cells expressing the A4860G mutant showed caffeine-induced Ca(2+) release but exhibited no SOICR. Importantly, HL-1 cardiac cells transfected with the A4860G mutant displayed attenuated SOICR activity compared with cells transfected with RyR2 WT. These observations provide the first evidence that a loss of luminal Ca(2+) activation and SOICR activity can cause ventricular fibrillation and sudden death. These findings also indicate that although suppressing enhanced SOICR is a promising antiarrhythmic strategy, its oversuppression can also lead to arrhythmias.
Project description:Paroxysmal kinesigenic dyskinesia (PKD) is a rare neurological disorder characterized by recurrent attacks of dyskinetic movements without alteration of consciousness that are often triggered by the initiation of voluntary movements. Whole-exome sequencing has revealed a cluster of pathogenic variants in PRRT2 (proline-rich transmembrane protein), a gene with a function in synaptic regulation that remains poorly understood. Here, we report the discovery of a novel PRRT2 pathogenic variant inherited in an autosomal dominant pattern in a family with PKD and benign familial infantile seizures (BFIS). After targeted Sanger sequencing did not identify the presence of previously described PRRT2 pathogenic variants, we carried out whole-exome sequencing in the proband and her affected paternal grandfather. This led to the discovery of a novel PRRT2 variant, NM_001256442:exon3:c.C959T/NP_660282.2:p.A320V, altering an evolutionarily conserved alanine at the amino acid position 320 located in the M2 transmembrane region. Sanger sequencing further confirmed the presence of this variant in four affected family members (paternal grandfather, father, brother, and proband) and its absence in two unaffected ones (paternal grandmother and mother). This newly found variant further reinforces the importance of PRRT2 in PKD, BFIS, and possibly other movement disorders. Future functional studies using animal models and human pluripotent stem cell models will provide new insights into the role of PRRT2 and the significance of this variant in regulating neural development and/or function.
Project description:The QIl1 gene produces a component of the Mitochondrial Contact Site and Cristae Organizing System that forms and stabilizes mitochondrial cristae junctions and is important in cellular energy production. We previously reported a family of Rhodesian Ridgebacks with cardiac arrhythmias and sudden cardiac death. Here, we performed whole genome sequencing on a trio from the family. Variant calling was performed using a standardized bioinformatics approach. Variants were filtered against variants from 247 dogs of 43 different breeds. High impact variants were validated against additional affected and unaffected dogs. A single missense G/A variant in the QIL1 gene was associated with the cardiac arrhythmia (p < 0.0001). The variant was predicted to change the amino acid from conserved Glycine to Serine and to be deleterious. Ultrastructural analysis of the biceps femoris muscle from an affected dog revealed hyperplastic mitochondria, cristae rearrangement, electron dense inclusions and lipid bodies. We identified a variant in the Q1l1 gene resulting in a mitochondrial cardiomyopathy characterized by cristae abnormalities and cardiac arrhythmias in a canine model. This natural animal model of mitochondrial cardiomyopathy provides a large animal model with which to study the development and progression of disease as well as genotypic phenotypic relationships.