Ontology highlight
ABSTRACT:
SUBMITTER: Mathios D
PROVIDER: S-EPMC8379179 | biostudies-literature | 2021 Aug
REPOSITORIES: biostudies-literature
Mathios Dimitrios D Johansen Jakob Sidenius JS Cristiano Stephen S Medina Jamie E JE Phallen Jillian J Larsen Klaus R KR Bruhm Daniel C DC Niknafs Noushin N Ferreira Leonardo L Adleff Vilmos V Chiao Jia Yuee JY Leal Alessandro A Noe Michael M White James R JR Arun Adith S AS Hruban Carolyn C Annapragada Akshaya V AV Jensen Sarah Østrup SØ Ørntoft Mai-Britt Worm MW Madsen Anders Husted AH Carvalho Beatriz B de Wit Meike M Carey Jacob J Dracopoli Nicholas C NC Maddala Tara T Fang Kenneth C KC Hartman Anne-Renee AR Forde Patrick M PM Anagnostou Valsamo V Brahmer Julie R JR Fijneman Remond J A RJA Nielsen Hans Jørgen HJ Meijer Gerrit A GA Andersen Claus Lindbjerg CL Mellemgaard Anders A Bojesen Stig E SE Scharpf Robert B RB Velculescu Victor E VE
Nature communications 20210820 1
Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for lung cancer. We validate the cancer detection model using an independent cohort of 385 non-cancer individuals and 46 lung cancer patients. Combining fragmentation features, clinical risk factors, and ...[more]