Project description:The Georgia-07-like genotype II African swine fever virus (ASFV) with high virulence has been prevalent in China since 2018. Here, we report that genotype I ASFVs have now also emerged in China. Two non-haemadsorbing genotype I ASFVs, HeN/ZZ-P1/21 and SD/DY-I/21, were isolated from pig farms in Henan and Shandong province, respectively. Phylogenetic analysis of the whole genome sequences suggested that both isolates share high similarity with NH/P68 and OURT88/3, two genotype I ASFVs isolated in Portugal in the last century. Animal challenge testing revealed that SD/DY-I/21 shows low virulence and efficient transmissibility in pigs, and causes mild onset of infection and chronic disease. SD/DY-I/21 was found to cause necrotic skin lesions and joint swelling. The emergence of genotype I ASFVs will present more problems and challenges for the control and prevention of African swine fever in China.
Project description:It is widely accepted that modern pigs were domesticated independently at least twice, and Chinese native pigs are deemed as direct descendants of the first domesticated pigs in the corresponding domestication centers. By analyzing mitochondrial DNA sequences of an extensive sample set spanning 10,000 years, we find that the earliest pigs from the middle Yellow River region already carried the maternal lineages that are dominant in both younger archaeological populations and modern Chinese pigs. Our data set also supports early Neolithic pig utilization and a long-term in situ origin for northeastern Chinese pigs during 8,000-3,500 BP, suggesting a possibly independent domestication in northeast China. Additionally, we observe a genetic replacement in ancient northeast Chinese pigs since 3,500 BP. The results not only provide increasing evidence for pig origin in the middle Yellow River region but also depict an outline for the process of early pig domestication in northeast China.
Project description:BACKGROUND:Hepatitis E virus (HEV) is one major cause of acute clinical hepatitis among humans throughout the world. In industrialized countries an increasing number of autochthonous HEV infections have been identified over the last years triggered by food borne as well as - to a much lower degree - by human to human transmission via blood transfusion. Pigs have been recognised as main reservoir for HEV genotype 3 (HEV-3), and zoonotic transmission to humans through undercooked/raw meat is reported repeatedly. The minimal infectious dose of HEV-3 for pigs is so far unknown. RESULTS:The minimum infectious dose of HEV-3 in a pig infection model was determined by intravenous inoculation of pigs with a dilution series of a liver homogenate of a HEV infected wild boar. Seroconversion, virus replication and shedding were determined by analysis of blood and faeces samples, collected over a maximum period of 91?days. A dose dependent incubation period was observed in faecal shedding of viruses employing a specific and sensitive PCR method. Faecal viral shedding and seroconversion was detected in animals inoculated with dilutions of up to 10-?7. This correlates with an intravenously (i.v.) administered infectious dose of only 6.5 copies in 2?ml (corresponding to 24?IU HEV RNA/ml). Furthermore the first detectable shedding of HEV RNA in faeces is clearly dose dependent. Unexpectedly one group infected with a 10-?4 dilution exhibited prolonged virus shedding for more than 60?days suggesting a persistent infection. CONCLUSION:The results indicate that pigs are highly susceptible to i.v. infection with HEV and that the swine model represents the most sensitive infectivity assay for HEV so far. Considering a minimum infectious dose of 24?IU RNA/ml our findings highlights the potential risk of HEV transmission via blood and blood products.
Project description:UnlabelledInfluenza B virus (IBV) causes seasonal epidemics in humans. Although IBV has been isolated from seals, humans are considered the primary host and reservoir of this important pathogen. It is unclear whether other animal species can support the replication of IBV and serve as a reservoir. Swine are naturally infected with both influenza A and C viruses. To determine the susceptibility of pigs to IBV infection, we conducted a serological survey for U.S. Midwest domestic swine herds from 2010 to 2012. Results of this study showed that antibodies to IBVs were detected in 38.5% (20/52) of sampled farms, and 7.3% (41/560) of tested swine serum samples were positive for IBV antibodies. Furthermore, swine herds infected with porcine reproductive and respiratory syndrome virus (PRRSV) showed a higher prevalence of IBV antibodies in our 2014 survey. In addition, IBV was detected in 3 nasal swabs collected from PRRSV-seropositive pigs by real-time RT-PCR and sequencing. Finally, an experimental infection in pigs, via intranasal and intratracheal routes, was performed using one representative virus from each of the two genetically and antigenically distinct lineages of IBVs: B/Brisbane/60/2008 (Victoria lineage) and B/Yamagata/16/1988 (Yamagata lineage). Pigs developed influenza-like symptoms and lung lesions, and they seroconverted after virus inoculation. Pigs infected with B/Brisbane/60/2008 virus successfully transmitted the virus to sentinel animals. Taken together, our data demonstrate that pigs are susceptible to IBV infection; therefore, they warrant further surveillance and investigation of swine as a potential host for human IBV.ImportanceIBV is an important human pathogen, but its ability to infect other species, for example, pigs, is not well understood. We showed serological evidence that antibodies to two genetically and antigenically distinct lineages of IBVs were present among domestic pigs, especially in swine herds previously infected with PRRSV, an immunosuppressive virus. IBV was detected in 3 nasal swabs from PRRSV-seropositive pigs by real-time reverse transcription-PCR and sequencing. Moreover, both lineages of IBV were able to infect pigs under experimental conditions, with transmissibility of influenza B/Victoria lineage virus among pigs being observed. Our results demonstrate that pigs are susceptible to IBV infections, indicating that IBV is a swine pathogen, and swine may serve as a natural reservoir of IBVs. In addition, pigs may serve as a model to study the mechanisms of transmission and pathogenesis of IBVs.
Project description:In investigating influenza in an immunodeficient child in China, in December 2010, we found that the influenza virus showed high sequence identity to that of swine. Serologic evidence indicated that viral persistence in pigs was the source of infection. Continued surveillance of pigs and systemic analysis of swine influenza isolates are needed.
Project description:Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is capable of causing encephalitic diseases in children. While humans can succumb to severe disease, the transmission cycle is maintained by viremic birds and pigs in endemic regions. Although JEV is regarded as a significant threat to the United States (U.S.), the susceptibility of domestic swine to JEV infection has not been evaluated. In this study, domestic pigs from North America were intravenously challenged with JEV to characterize the pathological outcomes. Systemic infection followed by the development of neutralizing antibodies were observed in all challenged animals. While most clinical signs were limited to nonspecific symptoms, virus dissemination and neuroinvasion was observed at the acute phase of infection. Detection of infectious viruses in nasal secretions suggest infected animals are likely to promote the vector-free transmission of JEV. Viral RNA present in tonsils at 28 days post infection demonstrates the likelihood of persistent infection. In summary, our findings indicate that domestic pigs can potentially become amplification hosts in the event of an introduction of JEV into the U.S. Vector-free transmission to immunologically naïve vertebrate hosts is also likely through nasal shedding of infectious viruses.
Project description:We performed a molecular survey for Cytauxzoon felis infection in 311 domestic cats in Yunnan Province, China, in 2016 and found a prevalence of 21.5%. C. felis infection in domestic and wild cats in other provinces should be investigated to determine parasite prevalence and genetic diversity among cats throughout China.
Project description:BackgroundHepatitis E virus (HEV) is prevalent in pigs and may serve as a reservoir for human infection. However, data on HEV infections in pigs in Ibaraki Prefecture, Japan, are limited. Here, we clarified the process and course of HEV in naturally infected pigs. Serum (n = 160) and liver (n = 110) samples were collected from pigs at the slaughterhouse. Furthermore, serum samples were collected from 45 breeding sows and serum and feces samples were collected from 7 piglets once a week (raised until 166 days of age). HEV antigen and antibodies were evaluated, and the genotype was identified based on molecular phylogenetic tree analysis.ResultsThe samples collected from the slaughterhouse revealed that few pigs were HEV carriers but most possessed anti-HEV antibodies. Most breeding sows possessed antibodies, and the piglets excreted HEV on the farm at approximately 10 weeks of age. One pig was initially infected, and in a few weeks, the other pigs living in the same sty became infected.ConclusionsMost pigs in Ibaraki Prefecture were with HEV. On the farm, most piglets were infected with HEV by the time they reached slaughter age. We confirmed that HEV infection is successively transmitted among piglets living in the same sty.