LC-HRMS Profiling and Antidiabetic, Antioxidant, and Antibacterial Activities of Acacia catechu (L.f.) Willd.
Ontology highlight
ABSTRACT: Acacia catechu (L.f.) Willd is a profoundly used traditional medicinal plant in Asia. Previous studies conducted in this plant are more confined to extract level. Even though bioassay-based studies indicated the true therapeutic potential of this plant, compound annotation was not performed extensively. This research is aimed at assessing the bioactivity of different solvent extracts of the plant followed by annotation of its phytoconstituents. Liquid chromatography equipped with high resolution mass spectrometry (LC-HRMS) is deployed for the identification of secondary metabolites in various crude extracts. On activity level, its ethanolic extract showed the highest inhibition towards α-amylase and α-glucosidase with an IC50 of 67.8 ± 1 μg/mL and 10.3 ± 0.1 μg/mL respectively, inspected through the substrate-based method. On the other hand, the plant extract showed an antioxidant activity of 23.76 ± 1.57 μg/mL, measured through radical scavenging activity. Similarly, ethyl acetate and aqueous extracts of A. catechu showed significant inhibition against Staphylococcus aureus with a zone of inhibition (ZoI) of 13 and 14 mm, respectively. With the LC-HRMS-based dereplication strategy, we have identified 28 secondary metabolites belonging to flavonoid and phenolic categories. Identification of these metabolites from A. catechu and its biological implication also support the community-based usage of this plant and its medicinal value.
Project description:Kınkor (Ferulago stellata) is Turkish medicinal plant species and used in folk medicine against some diseases. As far as we know, the data are not available on the biological activities and chemical composition of this medicinal plant. In this study, the phytochemical composition; some metabolic enzyme inhibition; and antidiabetic, anticholinergic, and antioxidant activities of this plant were assessed. In order to evaluate the antioxidant activity of evaporated ethanolic extract (EEFS) and lyophilized water extract (WEFS) of kınkor (Ferulago stellata), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging activity, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+)-binding activities were separately performed. Furthermore, ascorbic acid, BHT, and α-tocopherol were used as the standard compounds. Additionally, the main phenolic compounds that are responsible for antioxidant abilities of ethanol and water extracts of kınkor (Ferulago stellata) were determined by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Ethanol and water extracts of kınkor (Ferulago stellata) demonstrated effective antioxidant abilities when compared to standards. Moreover, ethanol extract of kınkor (Ferulago stellata) demonstrated IC50 values of 1.772 μg/mL against acetylcholinesterase (AChE), 33.56 ± 2.96 μg/mL against α-glycosidase, and 0.639 μg/mL against α-amylase enzyme respectively.
Project description:Oxidative stress (OS) and the resulting reactive oxygen species (ROS) generation and inflammation play a pivotal role in the neuronal loss occurring during the onset of neurodegenerative diseases. Therefore, promising future drugs that would prevent or slow down the progression of neurodegeneration should possess potent radical-scavenging activity. Acacia catechu Willd. heartwood extract (AC), already characterized for its high catechin content, is endowed with antioxidant properties. The aim of the present study was to assess AC neuroprotection in both human neuroblastoma SH-SY5Y cells and rat brain slices treated with hydrogen peroxide. In SH-SY5Y cells, AC prevented a decrease in viability, as well as an increase in sub-diploid-, DAPI positive cells, reduced ROS formation, and recovered the mitochondrial potential and caspase-3 activation. AC related neuroprotective effects also occurred in rat brain slices as a reversal prevention in the expression of the main proteins involved in apoptosis and signalling pathways related to calcium homeostasis following OS-mediated injury. Additionally, unbiased quantitative mass spectrometry allowed for assessing that AC partially prevented the hydrogen peroxide-induced altered proteome, including proteins belonging to the synaptic vesicle fusion apparatus. In conclusion, the present results suggest the possibility of AC as a nutraceutical useful in preventing neurodegenerative diseases.
Project description:The research for innovative treatments against colon adenocarcinomas is still a great challenge. Acacia catechu Willd. heartwood extract (AC) has health-promoting qualities, especially at the gastrointestinal level. This study characterized AC for its catechins content and investigated the apoptosis-enhancing effect in human colorectal adenocarcinoma HT-29 cells, along with its ability to spare healthy tissue. MTT assay was used to describe the time course, concentration dependence and reversibility of AC-mediated cytotoxicity. Cell cycle analysis and AV-PI and DAPI-staining were performed to evaluate apoptosis, together with ROS formation, mitochondrial membrane potential (MMP) changes and caspase activities. Rat ileum and colon rings were tested for their viability and functionality to explore AC effects on healthy tissue. Quantitative analysis highlighted that AC was rich in (±)-catechin (31.5 ± 0.82 mg/g) and (-)-epicatechin (12.5 ± 0.42 mg/g). AC irreversibly decreased cell viability in a concentration-dependent, but not time-dependent fashion. Cytotoxicity was accompanied by increases in apoptotic cells and ROS, a reduction in MMP and increases in caspase-9 and 3 activities. AC did not affect rat ileum and colon rings' viability and functionality, suggesting a safe profile toward healthy tissue. The present findings outline the potential of AC for colon cancer treatment.
Project description:Oxidative stress (OS) resulting in reactive oxygen species (ROS) generation and inflammation, play a pivotal role in the neuronal loss occurring in neurodegenerative diseases. Therefore, promising future drugs that would prevent or slow down the progression of neurodegeneration should possess potent radical-scavenging activity. Acacia catechu Willd heartwood extract (AC) contains high amount of catechins endowed of antioxidant properties. The aim of the present study was to assess AC neuroprotection in rat brain slices treated with hydrogen peroxide. AC reverted the decrease in viability as well as the increase in sub-diploid-, DAPI positive cells, reduced ROS formation, recovered the mitochondrial potential and caspase-3 activation. Neuroprotective effects occurred in rat brain slices as a reversal in the expression of the main proteins involved in apoptosis and signalling pathways related to calcium homeostasis following OS-mediated injury was demonstrated. Additionally, unbiased quantitative mass spectrometry allowed us to assess that AC partially reverted the hydrogen peroxide-induced altered proteome, including proteins belonging to the synaptic vesicle fusion apparatus. In conclusion, the present results suggest the possibility of AC as a nutraceutical useful in preventing neurodegenerative diseases.
Project description:BACKGROUND:Acacia catechu has been widely used in Ayurveda for treating many diseases. Its heartwood extract is used in asthma, cough, bronchitis, colic, diarrhea, dysentery, boils, skin afflictions, sores and for stomatitis. The decoction of heartwood is used for drinking purpose in southern part of India especially in Kerala. OBJECTIVE:The current study was carried out to evaluate immunomodulatory effects of heartwood extracts of A. catechu in Swiss albino mice. MATERIAL AND METHODS:In vivo immunomodulatory activity was analyzed by hemagglutinating antibody (HA) titer, plaque forming cell assay and delayed type hypersensitivity (DTH). In vitro immunomodulatory potential of the extracts was studied using peritoneal macrophages and splenocytes from mice. Effect of extracts on phagocytic activity of macrophages was analyzed by nitroblue tetrazolium (NBT) reduction assay and cellular lysosomal enzyme assay. Anti-inflammatory activity was studied by nitric oxide (NO) assay and production of TNF-α and IL-10. RESULTS:A dose dependent increase in antibody titer was observed with extracts treatment. Treatment with extracts produced an enhancement in the number of antibody producing cells in the spleen. DTH reaction was significantly decreased with extracts treatment. An increased phagocytic response was shown by peritoneal macrophages on treatment with the extracts as evidenced by its effect on NBT reduction and cellular lysosomal enzyme activity. The extracts inhibited the release of pro-inflammatory cytokine TNF-α and the production of NO. IL-10 production was significantly increased after extract treatment. CONCLUSION:The results of the present study indicate the immunomodulatory effects of A. catechu extracts on humoral, cell mediated and non-specific immune functions.
Project description:Water extract of Acacia seyal bark is used traditionally by the population in Djibouti for its anti-infectious activity. The evaluation of in vitro antibacterial, antioxidant activities and cytotoxicity as well as chemical characterization of Acacia seyal bark water and methanolic extracts were presented. The water extract has a toxicity against the MRC-5 cells at 256 ?g/mL while the methanolic extract has a weak toxicity at the same concentration. The methanolic extract has a strong antioxidant activity with half maximal inhibitory concentration (IC50) of 150 ± 2.2 ?g/mL using 1-diphenyl-2-picrylhydrazyl (DPPH) and IC50 of 27 ± 1.3 ?g/mL using 2,2'-azino-bis 3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical methods. For ferric reducing/antioxidant power (FRAP) assay, the result is 45.74 ± 5.96 ?g Vitamin C Equivalent (VCE)/g of dry weight (DW). The precipitation of tannins from methanol crude extract decreases the MIC from 64 µg/mL to 32 µg/mL against Staphylococcus aureus and Corynebacterium urealyticum. However, the antioxidant activity is higher before tannins precipitation than after (IC50 = 150 µg/mL for methanolic crude extract and 250 µg/mL after tannins precipitation determined by DPPH method). By matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, the results showed that the condensed tannins consist of two types of catechin and gallocatechin-based oligomers. The fractionation led to the identification of three pure compounds: two flavanols catechin and epicatechin; one triterpene as lupeol; and a mixture of three steroids and one fatty acid: campesterol, stigmasterol, clionasterol, and oleamide.
Project description:BackgroundAcacia catechu (Mimosa family) stem bark extracts have been used traditionally as a dietary supplement as well as a folk medicine given its reported anti-inflammatory, immunomodulatory, hepatoprotective, antioxidant, anti-microbial and anti-tumor activities. The present study was undertaken to evaluate the anti-HIV-1 activity of the extracts from stem bark of A. catechu.MethodsThe aqueous and 50% ethanolic extracts of A. catechu stem bark were prepared and 50% ethanolic extract was further fractioned by successively partitioning with petroleum ether, chloroform and n-butanol. All the extracts and fractions were evaluated for cytotoxicity and anti-HIV-1 activity using different in vitro assays. The active n-butanol fraction was evaluated for its inhibition against HIV-1 reverse transcriptase, integrase, protease, pro-viral genome integration and viral Tat protein mediated transactivation. The effect of n-butanol fraction on the induction of pro-inflammatory cytokines secretion in Vk2/E6E7 cells and transepithelial resistance in Caco-2 and HEC-1A cells was investigated.ResultsThe aqueous and 50% ethanolic extracts of A. catechu showed IC50 values of 1.8?±?0.18 ?g/ml and 3.6?±?0.31 ?g/ml, respectively in cell-free virus based assay using TZM-bl cells and HIV-1NL4.3 (X-4 tropic). In the above assay, n-butanol fraction exhibited anti-HIV-1 activity with an IC50 of 1.7?±?0.12 ?g/ml. The n-butanol fraction showed a dose-dependent inhibition against HIV-1NL4.3 infection of the peripheral blood lymphocytes and against HIV-1BaL(R-5-tropic) as well as two different primary viral isolates of HIV-1 infection of TZM-bl cells. The n-butanol fraction demonstrates a potent inhibitory activity against the viral protease (IC50?=?12.9 ?g/ml), but not reverse transcriptase or integrase. Further, in Alu-PCR no effect on viral integration was observed. The n-butanol fraction interfered with the Tat-mediated Long Terminal Repeat transactivation in TZM-bl cells, mRNA quantitation (qRT-PCR) and electrophoretic mobility shift assay (EMSA). The n-butanol fraction did not cause an enhanced secretion of pro-inflammatory cytokines in Vk2/E6E7 cells. Additionally, no adverse effects were observed to the monolayer formed by the Caco-2 and HEC-1A epithelial cells.ConclusionsThe results presented here show a potential anti-HIV-1 activity of A. catechu mediated by the inhibition of the functions of the viral protein and Tat.
Project description:Seeds were obtained from seven natural populations of Acacia dealbata, three natural populations of A. mangium and a seed orchard of A. mangium, representing the natural range of the two species. Polyploids were discovered in two of the seven populations of A. dealbata. The 2C DNA amount for diploid A. dealbata (2n = 2x = 26) was 1.74 pg, and for diploid A. mangium (2n = 2x = 26) was 1.30 pg. A naturally occurring tetraploid of A. dealbata (2n = 4x = 52) had a 2C DNA amount of 3.41 pg and a naturally occurring triploid genotype had a 2C DNA amount of 2.53 pg. The use of colchicine and oryzalin was investigated as a means of producing higher frequencies of tetraploids of both A. mangium and A. dealbata for incorporation into breeding programmes. Colchicine treatment gave tetraploid frequencies up to 29% for A. dealbata seedlings, and up to 18% for A. mangium seedlings. In contrast, no tetraploid A. mangium was detected following oryzalin treatment, and the low frequencies of tetraploids observed in A. dealbata could be attributed to their natural occurrence.
Project description:In this study, for the environmental development, the antifungal, antibacterial, and antioxidant activities of a water extract of flowers from Acacia saligna (Labill.) H. L. Wendl. were evaluated. The extract concentrations were prepared by dissolving them in 10% DMSO. Wood samples of Melia azedarach were treated with water extract, and the antifungal activity was examined at concentrations of 0%, 1%, 2%, and 3% against three mold fungi; Fusarium culmorum MH352452, Rhizoctonia solani MH352450, and Penicillium chrysogenum MH352451 that cause root rot, cankers, and green fruit rot, respectively, isolated from infected Citrus sinensis L. Antibacterial evaluation of the extract was assayed against four phytopathogenic bacteria, including Agrobacterium tumefaciens, Enterobacter cloacae, Erwinia amylovora, and Pectobacterium carotovorum subsp. carotovorum, using the micro-dilution method to determine the minimum inhibitory concentrations (MICs). Further, the antioxidant capacity of the water extract was measured via 2,2'-diphenylpicrylhydrazyl (DPPH). Phenolic and flavonoid compounds in the water extract were analyzed using HPLC: benzoic acid, caffeine, and o-coumaric acid were the most abundant phenolic compounds; while the flavonoid compounds naringenin, quercetin, and kaempferol were identified compared with the standard flavonoid compounds. The antioxidant activity of the water extract in terms of IC50 was considered weak (463.71 μg/mL) compared to the standard used, butylated hydroxytoluene (BHT) (6.26 μg/mL). The MIC values were 200, 300, 300, and 100 µg/mL against the growth of A. tumefaciens, E. cloacae, E. amylovora, and P. carotovorum subsp. carotovorum, respectively, which were lower than the positive control used (Tobramycin 10 μg/disc). By increasing the extract concentration, the percentage inhibition of fungal mycelial was significantly increased compared to the control treatment, especially against P. chrysogenum, suggesting that the use of A. saligna flower extract as an environmentally friendly wood bio-preservative inhibited the growth of molds that cause discoloration of wood and wood products.
Project description:BackgroundAcacia senegal is a plant traditionally used for its various properties, including the treatment of infectious diseases. Recently, our team has demonstrated the ability of the hydroethanolic extract of the leaves to increase the activity of phenicol antibiotics against multi-resistant bacteria. The aim of this work is to determine the toxicological effects of the extract and its capacity to inhibit the bacterial mobility of Gram-negative bacteria, in order to evaluate the level of safety use of this plant.MethodsThe cytotoxicity test was performed using the neutral red absorption method. Acute and sub-acute oral toxicity were conducted on NMRI mice and Wistar rats. The behaviour and adverse effects were recorded during the 14 days of the acute study. For the subacute test, biochemical parameters, food and water consumption, and morphological parameters were determined. The anti-motility activities were evaluated on Pseudomonas aeruginosa PA01 and Escherichia coli AG100, using specific concentrations of Agar as required by the method.ResultsHEASG induced inhibition of keratinocytes cell growth with an IC50 of 1302 ± 60 μg/mL. For the acute toxicity study in mice, the single dose of extract of 2000 mg/kg body weight caused no deaths and no behavioural changes were observed; therefore, the median lethal dose (LD50) of HEASG was calculated to 5000 mg/kg body weight. In Wistar rats, no mortality was observed at 250, 500 and 1000 mg/kg/day during the 28-day subacute oral toxicity study. The weights of both females and males increased globally over time, regardless of the batch. No statistically significant differences were registered for organ weights and biochemical parameters, except for chloride for biochemical parameters. Water and food consumption did not change significantly. Furthermore, no macroscopic changes in organ appearance were observed. Regarding anti-motility activity, the extract has reduced the swarming motility of PA01 and AG100 significantly at the concentration of 32 μg/mL (P < 0.001). The extract has reduced the swimming motility (P < 0.01) of PA01 but not AG100.ConclusionsThe results suggest that hydroethanolic extract of A. senegal leaves has significant activity against bacterial motility and relatively low toxicity.