Project description:Heterologous SARS-CoV-2 vaccine approaches with a second mRNA-based vaccine have been favored in the recommendations of many countries over homologous vector-based ChAdOx1 nCoV-19 vaccination after reports of thromboembolic events and lower efficacy of this regimen. In the middle of 2021, the SARS-CoV-2 Delta variant of concern (VoC) has become predominant in many countries worldwide. Data addressing the neutralization capacity of a heterologous ChAdOx1 nCoV-19/mRNA-based vaccination approach against the Delta VoC in comparison to the widely used homologous mRNA-based vaccine regimen are limited. Here, we compare serological immune responses of a cohort of ChAdOx1 nCoV-19/BNT162b2-vaccinated participants with those of BNT162b2/BNT162b2 vaccinated ones and show that neutralization capacity against the Delta VoC is significantly increased in sera of ChAdOx1 nCoV-19/BNT162b2-vaccinated participants. This overall effect can be attributed to ChAdOx1 nCoV-19/BNT162b2-vaccinated women, especially those with more severe adverse effects leading to sick leave following second immunization.
Project description:Currently approved viral vector-based and mRNA-based vaccine approaches against coronavirus disease 2019 (COVID-19) consider only homologous prime-boost vaccination. After reports of thromboembolic events, several European governments recommended using AstraZeneca's ChAdOx1-nCov-19 (ChAd) only in individuals older than 60 years, leaving millions of already ChAd-primed individuals with the decision to receive either a second shot of ChAd or a heterologous boost with mRNA-based vaccines. However, such combinations have not been tested so far. We used Hannover Medical School's COVID-19 Contact Study cohort of healthcare professionals to monitor ChAd-primed immune responses before and 3 weeks after booster with ChAd (n = 32) or BioNTech/Pfizer's BNT162b2 (n = 55). Although both vaccines boosted prime-induced immunity, BNT162b2 induced significantly higher frequencies of spike-specific CD4+ and CD8+ T cells and, in particular, high titers of neutralizing antibodies against the B.1.1.7, B.1.351 and P.1 variants of concern of severe acute respiratory syndrome coronavirus 2.
Project description:BackgroundVaccines are an important means to overcome the SARS-CoV-2 pandemic. They induce specific antibody and T-cell responses but it remains open how well vaccine-induced immunity is preserved over time following homologous and heterologous immunization regimens. Here, we compared the dynamics of humoral and cellular immune responses up to 180 days after homologous or heterologous vaccination with either ChAdOx1-nCoV-19 (ChAd) or BNT162b2 (BNT) or both.MethodsVarious tests were used to determine the humoral and cellular immune response. To quantify the antibody levels, we used the surrogate neutralization (sVNT) assay from YHLO, which we augmented with pseudo- and real virus neutralization tests (pVNT and rVNT). Antibody avidity was measured by a modified ELISA. To determine cellular reactivity, we used an IFN-γ Elispot, IFN-γ/IL Flurospot, and intracellular cytokine staining.FindingsAntibody responses significantly waned after vaccination, irrespective of the regimen. The capacity to neutralize SARS-CoV-2 - including variants of concern such as Delta or Omicron - was superior after heterologous compared to homologous BNT vaccination, both of which resulted in longer-lasting humoral immunity than homologous ChAd immunization. All vaccination regimens induced stable, polyfunctional T-cell responses.InterpretationThese findings demonstrate that heterologous vaccination with ChAd and BNT is a potent alternative to induce humoral and cellular immune protection in comparison to the homologous vaccination regimens.FundingThe study was funded by the German Centre for Infection Research (DZIF), the European Union's "Horizon 2020 Research and Innovation Programme" under grant agreement No. 101037867 (VACCELERATE), the "Bayerisches Staatsministerium für Wissenschaft und Kunst" for the CoVaKo-2021 and the For-COVID projects and the Helmholtz Association via the collaborative research program "CoViPa". Further support was obtained from the Federal Ministry of Education and Science (BMBF) through the "Netzwerk Universitätsmedizin", project "B-Fast" and "Cov-Immune". KS is supported by the German Federal Ministry of Education and Research (BMBF, 01KI2013) and the Else Kröner-Stiftung (2020_EKEA.127).
Project description:Background/purposeEfficacy and safety data of heterologous prime-boost vaccination against SARS-CoV-2 remains limited.MethodsWe recruited adult volunteers for homologous or heterologous prime-boost vaccinations with adenoviral (ChAdOx1, AstraZeneca) and/or mRNA (mRNA-1273, Moderna) vaccines. Four groups of prime-boost vaccination schedules were designed: Group 1, ChAdOx1/ChAdOx1 8 weeks apart; Group 2, ChAdOx1/mRNA-1273 8 weeks apart; Group 3, ChAdOx1/mRNA-1273 4 weeks apart; and Group 4, mRNA-1273/mRNA-1273 4 weeks apart. The primary outcome was serum anti-SARS-CoV-2 IgG titers and neutralizing antibody titers against B.1.1.7 (alpha) and B.1.617.2 (delta) variants on day 28 after the second dose. Adverse events were recorded up until 84 days after the second dose.ResultsWe enrolled 399 participants with a median age of 41 years and 75% were female. On day 28 after the second dose, the anti-SARS-CoV-2 IgG titers of both heterologous vaccinations (Group 2 and Group 3) were significantly higher than that of homologous ChAdOx1 vaccination (Group 1), and comparable with homologous mRNA-1273 vaccination (Group 4). The heterologous vaccination group had better neutralizing antibody responses against the alpha and delta variant as compared to the homologous ChAdOx1 group. Most of the adverse events (AEs) were mild and transient. AEs were less frequent when heterologous boosting was done at 8 weeks rather than at 4 weeks.ConclusionHeterologous ChAdOx1/mRNA-1273 vaccination provided higher immunogenicity than homologous ChAdOx1 vaccination and comparable immunogenicity with the homologous mRNA-1273 vaccination. Our results support the safety and efficacy of heterologous prime-boost vaccination using the ChAdOx1 and mRNA-1273 COVID-19 vaccines. (ClinicalTrials.gov number, NCT05074368).
Project description:ObjectivesWe assessed humoral responses and reactogenicity following the heterologous vaccination compared to the homologous vaccination groups.MethodsWe enrolled healthcare workers (HCWs) who were either vaccinated with ChAdOx1 followed by BNT162b2 (heterologous group) or 2 doses of ChAdOx1 (ChAdOx1 group) or BNT162b2 (BNT162b2 group). Immunogenicity was assessed by measuring antibody titers against receptor-binding domain (RBD) of SARS-CoV-2 spike protein in all participants and neutralizing antibody titer in 100 participants per group. Reactogenicity was evaluated by a questionnaire-based survey.ResultsWe enrolled 499 HCWs (ChAdOx1, n = 199; BNT162b2, n = 200; heterologous ChAdOx1/BNT162b2, n = 100). The geometric mean titer of anti-receptor-binding domain antibody at 14 days after the booster dose was significantly higher in the heterologous group (11 780.55 binding antibody unit (BAU)/mL [95% CI, 10 891.52-12 742.14]) than in the ChAdOx1 (1561.51 [95% CI, 1415.03-1723.15]) or BNT162b2 (2895.90 [95% CI, 2664.01-3147.98]) groups (both p < 0.001). The neutralizing antibody titer of the heterologous group (geometric mean ND50, 2367.74 [95% CI, 1970.03-2845.74]) was comparable to that of the BNT162b2 group (2118.63 [95% CI, 1755.88-2556.32]; p > 0.05) but higher than that of the ChAdOx1 group (391.77 [95% CI, 326.16-470.59]; p < 0.001). Compared with those against wild-type SARS-CoV-2, the geometric mean neutralizing antibody titers against the Delta variant at 14 days after the boosting were reduced by 3.0-fold in the heterologous group (geometric mean ND50, 872.01 [95% CI, 685.33-1109.54]), 4.0-fold in the BNT162b2 group (337.93 [95% CI, 262.78-434.57]), and 3.2-fold in the ChAdOx1 group (206.61 [95% CI, 144.05-296.34]). The local or systemic reactogenicity after the booster dose in the heterologous group was higher than that of the ChAdOx1 group but comparable to that of the BNT162b2 group.DiscussionHeterologous ChAdOx1 followed by BNT162b2 vaccination with a 12-week interval induced a robust humoral immune response against SARS-CoV-2, including the Delta variant, that was comparable to the homologous BNT162b2 vaccination and stronger than the homologous ChAdOx1 vaccination, with a tolerable reactogenicity profile.
Project description:Despite limited data on safety and immunogenicity, heterologous prime-boost vaccination is currently recommended for individuals with ChAdOx1 nCoV-19 prime immunization in certain age groups. In this prospective, single-center study we included 166 health care workers from Heidelberg University Hospital who received either heterologous ChAdOx1 nCoV-19/BNT162b2, homologous BNT162b2 or homologous ChAdOx1 nCoV-19 vaccination between December 2020 and May 2021. We measured anti-S1 IgG, SARS-CoV-2 specific neutralizing antibodies, and antibodies against different SARS-CoV-2 fragments 0-3 days before and 19-21 days after boost vaccination. Before boost, 55/70 (79%) ChAdOx1 nCoV-19-primed compared with 44/45 (98%) BNT162b2-primed individuals showed positive anti-S1 IgG with a median (IQR) anti-S1 IgG index of 1.95 (1.05-2.99) compared to 9.38 (6.26-17.12). SARS-CoV-2 neutralizing antibodies exceeded the threshold in 24/70 (34%) of ChAdOx1 nCoV-19-primed and 43/45 (96%) of BNT162b2-primed individuals. After boosting dose, median (IQR) anti-S1 IgG index in heterologous ChAdOx1 nCoV-19/BNT162b2 vaccinees was 116.2 (61.84-170), compared to 13.09 (7.03-29.02) in homologous ChAdOx1 nCoV-19 and 145.5 (100-291.1) in homologous BNT162b2 vaccinees. All boosted vaccinees exceeded the threshold for neutralization, irrespective of their vaccination scheme. Vaccination was well-tolerated overall. We show that heterologous ChAdOx1 nCoV-19/BNT162b2 vaccination is safe and induces a strong and broad humoral response in healthy individuals.