Project description:Background/objectiveThe most significant adverse events following SARS-CoV-2 vaccination are myocarditis and pericarditis. Myositis and dermatomyositis have been reported following SARS-CoV-2 infection, but vaccine-induced dermatomyositis (DM) has not been reported. Our case series aimed to characterize new onset dermatomyositis or disease-related flares following SARS-CoV-2 vaccination.Materials and methodsA total of 53 patients from our institution with a new or pre-existing diagnosis of DM were recruited and consented. Phone interviews were conducted to obtain vaccination status and symptoms following vaccination. Electronic medical records were reviewed to extract age, sex, autoantibody profiles, comorbidities, immunomodulatory therapies, creatine kinase (CK) values, and SARS-CoV-2 vaccination dates from the provincial vaccination registry. For patients who reported disease flares, records were reviewed for the onset and nature of symptoms, extent of organ involvement and changes in immunomodulation.ResultsOn average, patients received 2.62 vaccine doses (range 1-3 doses). A total of 3 of 51 patients (5.88%) experienced dermatomyositis symptoms following vaccination. Two patients were newly diagnosed with dermatomyositis, one requiring hospitalization. Reported symptom onset following vaccination ranged from 1 to 30 days. Of note, all of these patients had normal CK values, even though there was muscle biopsy-confirmed myositis in one patient. Eight patients in the cohort (15.1%) had asymptomatic CK elevation (<1.5 X ULN).ConclusionNew onset dermatomyositis or flare up of pre-existing dermatomyositis may be a rare complication in SARS-CoV-2 vaccination although no studies can support a true correlation. Several pathophysiologic mechanisms are proposed.
Project description:The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak is a major challenge for clinicians. SARS-CoV-2 infection results in coronavirus disease 2019 (COVID-19), and it is best known for its respiratory symptoms. It can also result in several extrapulmonary manifestations such as neurological complications potentially experienced during the course of COVID-19. The association of dermatomyositis (DM) with COVID-19 pathogenesis has not been well-studied. This study aimed to present a previously healthy 37-year-old man, a soldier by profession, with symptoms of DM on the 4th day from the onset of COVID-19. The patient presented DM symptoms with both skin and muscle manifestations. The patient suffered from cough, fever, and fatigue to begin with, and reverse-transcription polymerase chain reaction (RT-PCR) reported positive for SARS-CoV-2 infection. The laboratory findings showed, intra alia, elevated muscle enzymes CK 8253 U/l (N: <145 U/l), a positive test for myositis-specific autoantibodies (anti-Mi-2), electrodiagnostic tests exhibited features of myopathy, with the presence of muscle and skin symptoms. The patient improved with corticosteroids and immunosuppressive agent therapy. In summary, the association between COVID-19 and the development of multi-system autoimmune disorders such as DM remains unclear. Nevertheless, viral infections such as SARS-CoV-2 may likely serve as a trigger.
Project description:We investigated serological responses following a SARS-CoV-2 outbreak in spring 2020 on a US Marine recruit training base. 147 participants that were isolated during an outbreak of respiratory illness were enrolled in this study, with visits approximately 6 and 10 weeks post-outbreak (PO). This cohort is comprised of young healthy adults, ages 18-26, with a high rate of asymptomatic infection or mild symptoms, and therefore differs from previously reported longitudinal studies on humoral responses to SARS-CoV-2, which often focus on more diverse age populations and worse clinical presentation. 80.9% (119/147) of the participants presented with circulating IgG antibodies against SARS-CoV-2 spike (S) receptor-binding domain (RBD) at 6 weeks PO, of whom 97.3% (111/114) remained positive, with significantly decreased levels, at 10 weeks PO. Neutralizing activity was detected in all sera from SARS-CoV-2 IgG positive participants tested (n=38) at 6 and 10 weeks PO, without significant loss between time points. IgG and IgA antibodies against SARS-CoV-2 RBD, S1, S2, and the nucleocapsid (N) protein, as well neutralization activity, were generally comparable between those participants that had asymptomatic infection or mild disease. A multiplex assay including S proteins from SARS-CoV-2 and related zoonotic and human endemic betacoronaviruses revealed a positive correlation for polyclonal cross-reactivity to S after SARS-CoV-2 infection. Overall, young adults that experienced asymptomatic or mild SARS-CoV-2 infection developed comparable humoral responses, with no decrease in neutralizing activity at least up to 10 weeks after infection.
Project description:Persistent asymptomatic (PA) SARS-CoV-2 infections have been identified. The immune responses in these patients are unclear, and the development of effective treatments for these patients is needed. Here, we report a cohort of 23 PA cases carrying viral RNA for up to 191 days. PA cases displayed low levels of inflammatory and interferon response, weak antibody response, diminished circulating follicular helper T cells (cTfh), and inadequate specific CD4+ and CD8+ T-cell responses during infection, which is distinct from symptomatic infections and resembling impaired immune activation. Administration of a single dose of Ad5-nCoV vaccine to 10 of these PA cases elicited rapid and robust antibody responses as well as coordinated B-cell and cTfh responses, resulting in successful viral clearance. Vaccine-induced antibodies were able to neutralize various variants of concern and persisted for over 6 months, indicating long-term protection. Therefore, our study provides an insight into the immune status of PA infections and highlights vaccination as a potential treatment for prolonged SARS-CoV-2 infections.
Project description:Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most of the infected individuals have recovered without complications, but a few patients develop multiple organ involvements. Previous reports suggest an association between COVID-19 and various inflammatory myopathies, in addition to autoimmune diseases. COVID-19 has been known to exacerbate preexisting autoimmune diseases and trigger various autoantibodies and autoimmune disease occurrence. Here we report a case of complicated COVID-19 with anti-synthetase autoantibodies (ASSs) presenting with skin rash, muscle weakness, and interstitial lung disease (ILD) and subsequently diagnosed with dermatomyositis (DM). A 47-year-old Japanese male patient without any previous history of illness, including autoimmune diseases, presented with a high fever, sore throat, and cough. Oropharyngeal swab for SARS-Cov-2 polymerase chain reaction tested positive. He was isolated at home and did not require hospitalization. However, his respiratory symptoms continued, and he was treated with prednisolone (20 mg/day) for 14 days due to the newly developing interstitial shadows over the lower lobes of both lungs. These pulmonary manifestations remitted within a week. He presented with face edema and myalgia 4 weeks later when he was off corticosteroids. Subsequently, he presented with face erythema, V-neck skin rash, low-grade fever, and exertional dyspnea. High-resolution computed tomography of the chest showed ILD. Biochemical analysis revealed creatine kinase and aldolase elevations, in addition to transaminases. Anti-aminoacyl tRNA synthetase (ARS) was detected using an enzyme-linked immunosorbent assay (170.9 U/mL) (MESACUP™ (Medical & Biological Laboratories, Japan), and the tRNA component was identified as anti-PL-7 and anti-Ro-52 antibodies using an immunoblot assay [EUROLINE Myositis Antigens Profile 3 (IgG), Euroimmun, Lübeck,Germany]. The patient was diagnosed with DM, especially anti- synthase antibody syndrome based on the presence of myositis-specific antibodies, clinical features, and pathological findings. The present case suggests that COVID-19 may have contributed to the production of anti-synthetase antibodies (ASAs) and the development of de novo DM. Our case highlights the importance of the assessment of patients who present with inflammatory myopathy post-COVID-19 and appropriate diagnostic work-up, including ASAs, against the clinical features that mimic DM after post-COVID-19.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world since the first cases of coronavirus disease 2019 (COVID-19) were observed in December 2019 in Wuhan, China. It has been suspected that infected persons who remain asymptomatic play a significant role in the ongoing pandemic, but their relative number and effect have been uncertain. The authors sought to review and synthesize the available evidence on asymptomatic SARS-CoV-2 infection. Asymptomatic persons seem to account for approximately 40% to 45% of SARS-CoV-2 infections, and they can transmit the virus to others for an extended period, perhaps longer than 14 days. Asymptomatic infection may be associated with subclinical lung abnormalities, as detected by computed tomography. Because of the high risk for silent spread by asymptomatic persons, it is imperative that testing programs include those without symptoms. To supplement conventional diagnostic testing, which is constrained by capacity, cost, and its one-off nature, innovative tactics for public health surveillance, such as crowdsourcing digital wearable data and monitoring sewage sludge, might be helpful.
Project description:ObjectiveCurrently, there are no data available on SARS-CoV-2 vaccine responses in pediatric-onset multiple sclerosis (POMS), and little is known about the course of SARS-CoV-2 infection in this age group. We therefore investigated humoral immune responses after COVID-19 vaccination and/or infection in POMS.MethodsWe retrospectively analyzed seroconversion rates and SARS-CoV-2-specific antibody levels in 30 POMS and one pediatric CIS patient treated with no disease-modifying therapy (no DMT), immunomodulatory DMT (IM-DMT), or immunosuppressive DMT (IS-DMT) from two Austrian MS centers.ResultsThe median age at MS onset was 15.39 years (interquartile range [IQR]: 1.97). The median age at the first COVID-19 vaccination was 17.43 years (IQR: 2.76). After two vaccine doses, seroconversion (≥0.8 BAU/ml) was reached in 25 of 28 patients (89.3%). All patients with no DMT or IM-DMT generated robust immune responses to vaccination (seroconversion: no DMT: 6/6, IM-DMT: 7/7 [100%]; median titers: no DMT: 2075 BAU [IQR: 1268.50], IM-DMT: 2500 BAU [IQR: 0]). In the IS-DMT group, seroconversion was achieved in 12 of 14 patients (80%), and median titers were 50.8 BAU (IQR 254.63). Titers were significantly higher in no DMT versus IS-DMT (P = 0.012) and in IM-DMT versus IS-DMT (P = 0.001). Infection with SARS-CoV-2 occurred in 11 of 31 patients, and symptoms were mild in all cases. One relapse occurred after infection, but no relapses were documented after vaccination.ConclusionsGenerally, mRNA vaccinations were well tolerated in POMS patients with and without DMT. Immune response was significantly reduced in patients treated with IS-DMT. No unexpected adverse events or relapses related to vaccinations were observed.
Project description:Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here we uncover a role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.