Project description:We investigated serological responses following a SARS-CoV-2 outbreak in spring 2020 on a US Marine recruit training base. 147 participants that were isolated during an outbreak of respiratory illness were enrolled in this study, with visits approximately 6 and 10 weeks post-outbreak (PO). This cohort is comprised of young healthy adults, ages 18-26, with a high rate of asymptomatic infection or mild symptoms, and therefore differs from previously reported longitudinal studies on humoral responses to SARS-CoV-2, which often focus on more diverse age populations and worse clinical presentation. 80.9% (119/147) of the participants presented with circulating IgG antibodies against SARS-CoV-2 spike (S) receptor-binding domain (RBD) at 6 weeks PO, of whom 97.3% (111/114) remained positive, with significantly decreased levels, at 10 weeks PO. Neutralizing activity was detected in all sera from SARS-CoV-2 IgG positive participants tested (n=38) at 6 and 10 weeks PO, without significant loss between time points. IgG and IgA antibodies against SARS-CoV-2 RBD, S1, S2, and the nucleocapsid (N) protein, as well neutralization activity, were generally comparable between those participants that had asymptomatic infection or mild disease. A multiplex assay including S proteins from SARS-CoV-2 and related zoonotic and human endemic betacoronaviruses revealed a positive correlation for polyclonal cross-reactivity to S after SARS-CoV-2 infection. Overall, young adults that experienced asymptomatic or mild SARS-CoV-2 infection developed comparable humoral responses, with no decrease in neutralizing activity at least up to 10 weeks after infection.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world since the first cases of coronavirus disease 2019 (COVID-19) were observed in December 2019 in Wuhan, China. It has been suspected that infected persons who remain asymptomatic play a significant role in the ongoing pandemic, but their relative number and effect have been uncertain. The authors sought to review and synthesize the available evidence on asymptomatic SARS-CoV-2 infection. Asymptomatic persons seem to account for approximately 40% to 45% of SARS-CoV-2 infections, and they can transmit the virus to others for an extended period, perhaps longer than 14 days. Asymptomatic infection may be associated with subclinical lung abnormalities, as detected by computed tomography. Because of the high risk for silent spread by asymptomatic persons, it is imperative that testing programs include those without symptoms. To supplement conventional diagnostic testing, which is constrained by capacity, cost, and its one-off nature, innovative tactics for public health surveillance, such as crowdsourcing digital wearable data and monitoring sewage sludge, might be helpful.
Project description:Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most of the infected individuals have recovered without complications, but a few patients develop multiple organ involvements. Previous reports suggest an association between COVID-19 and various inflammatory myopathies, in addition to autoimmune diseases. COVID-19 has been known to exacerbate preexisting autoimmune diseases and trigger various autoantibodies and autoimmune disease occurrence. Here we report a case of complicated COVID-19 with anti-synthetase autoantibodies (ASSs) presenting with skin rash, muscle weakness, and interstitial lung disease (ILD) and subsequently diagnosed with dermatomyositis (DM). A 47-year-old Japanese male patient without any previous history of illness, including autoimmune diseases, presented with a high fever, sore throat, and cough. Oropharyngeal swab for SARS-Cov-2 polymerase chain reaction tested positive. He was isolated at home and did not require hospitalization. However, his respiratory symptoms continued, and he was treated with prednisolone (20 mg/day) for 14 days due to the newly developing interstitial shadows over the lower lobes of both lungs. These pulmonary manifestations remitted within a week. He presented with face edema and myalgia 4 weeks later when he was off corticosteroids. Subsequently, he presented with face erythema, V-neck skin rash, low-grade fever, and exertional dyspnea. High-resolution computed tomography of the chest showed ILD. Biochemical analysis revealed creatine kinase and aldolase elevations, in addition to transaminases. Anti-aminoacyl tRNA synthetase (ARS) was detected using an enzyme-linked immunosorbent assay (170.9 U/mL) (MESACUP™ (Medical & Biological Laboratories, Japan), and the tRNA component was identified as anti-PL-7 and anti-Ro-52 antibodies using an immunoblot assay [EUROLINE Myositis Antigens Profile 3 (IgG), Euroimmun, Lübeck,Germany]. The patient was diagnosed with DM, especially anti- synthase antibody syndrome based on the presence of myositis-specific antibodies, clinical features, and pathological findings. The present case suggests that COVID-19 may have contributed to the production of anti-synthetase antibodies (ASAs) and the development of de novo DM. Our case highlights the importance of the assessment of patients who present with inflammatory myopathy post-COVID-19 and appropriate diagnostic work-up, including ASAs, against the clinical features that mimic DM after post-COVID-19.
Project description:Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here we uncover a role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.
Project description:Coronavirus disease 2019 (COVID-19) has emerged as a global public health emergency, which is characterized by high infection rate and fatal course. Recent data reported that the test for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) RNA might become positive again after one or two consecutively negative tests. Many researchers are currently evaluating the clinical characteristics of the SARS-CoV-2 reactivation. In this letter, we proposed a possible mechanism of SARS-CoV-2 reactivation or relapse after negative nasopharyngeal swabs PCR.
Project description:Around two percent of asymptomatic women in labor test positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Spain. Families and care providers face childbirth with uncertainty. We determined if SARS-CoV-2 infection at delivery among asymptomatic mothers had different obstetric outcomes compared to negative patients. This was a multicenter prospective study based on universal antenatal screening for SARS-CoV-2 infection. A total of 42 hospitals tested women admitted for delivery using polymerase chain reaction, from March to May 2020. We included positive mothers and a sample of negative mothers asymptomatic throughout the antenatal period, with 6-week postpartum follow-up. Association between SARS-CoV-2 and obstetric outcomes was evaluated by multivariate logistic regression analyses. In total, 174 asymptomatic SARS-CoV-2 positive pregnancies were compared with 430 asymptomatic negative pregnancies. No differences were observed between both groups in key maternal and neonatal outcomes at delivery and follow-up, with the exception of prelabor rupture of membranes at term (adjusted odds ratio 1.88, 95% confidence interval 1.13-3.11; p = 0.015). Asymptomatic SARS-CoV-2 positive mothers have higher odds of prelabor rupture of membranes at term, without an increase in perinatal complications, compared to negative mothers. Pregnant women testing positive for SARS-CoV-2 at admission for delivery should be reassured by their healthcare workers in the absence of symptoms.
Project description:The BNT162b2 mRNA COVID-19 vaccine (Pfizer-BioNTech) is being utilised internationally for mass COVID-19 vaccination. Evidence of single-dose protection against symptomatic disease has encouraged some countries to opt for delayed booster doses of BNT162b2, but the effect of this strategy on rates of asymptomatic SARS-CoV-2 infection remains unknown. We previously demonstrated frequent pauci- and asymptomatic SARS-CoV-2 infection amongst healthcare workers (HCWs) during the UK's first wave of the COVID-19 pandemic, using a comprehensive PCR-based HCW screening programme (Rivett et al., 2020; Jones et al., 2020). Here, we evaluate the effect of first-dose BNT162b2 vaccination on test positivity rates and find a fourfold reduction in asymptomatic infection amongst HCWs ≥12 days post-vaccination. These data provide real-world evidence of short-term protection against asymptomatic SARS-CoV-2 infection following a single dose of BNT162b2 vaccine, suggesting that mass first-dose vaccination will reduce SARS-CoV-2 transmission, as well as the burden of COVID-19 disease.
Project description:We investigated the kinetics of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies in 7 asymptomatic persons and 11 patients with pneumonia. The geometric mean titer of neutralizing antibodies declined from 219.4 at 2 months to 143.7 at 5 months after infection, indicating a waning antibody response.