Ontology highlight
ABSTRACT:
SUBMITTER: Sun H
PROVIDER: S-EPMC8384880 | biostudies-literature | 2021 Aug
REPOSITORIES: biostudies-literature
Sun Hua H Cao Song S Mashl R Jay RJ Mo Chia-Kuei CK Zaccaria Simone S Wendl Michael C MC Davies Sherri R SR Bailey Matthew H MH Primeau Tina M TM Hoog Jeremy J Mudd Jacqueline L JL Dean Dennis A DA Patidar Rajesh R Chen Li L Wyczalkowski Matthew A MA Jayasinghe Reyka G RG Rodrigues Fernanda Martins FM Terekhanova Nadezhda V NV Li Yize Y Lim Kian-Huat KH Wang-Gillam Andrea A Van Tine Brian A BA Ma Cynthia X CX Aft Rebecca R Fuh Katherine C KC Schwarz Julie K JK Zevallos Jose P JP Puram Sidharth V SV Dipersio John F JF Davis-Dusenbery Brandi B Ellis Matthew J MJ Lewis Michael T MT Davies Michael A MA Herlyn Meenhard M Fang Bingliang B Roth Jack A JA Welm Alana L AL Welm Bryan E BE Meric-Bernstam Funda F Chen Feng F Fields Ryan C RC Li Shunqiang S Govindan Ramaswamy R Doroshow James H JH Moscow Jeffrey A JA Evrard Yvonne A YA Chuang Jeffrey H JH Raphael Benjamin J BJ Ding Li L
Nature communications 20210824 1
Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver e ...[more]