Project description:Quiescent stem cells in adult tissues can be activated for homeostasis or repair. Neural stem cells (NSCs) in Drosophila are reactivated from quiescence in response to nutrition by the insulin signaling pathway. It is widely accepted that quiescent stem cells are arrested in G0 In this study, however, we demonstrate that quiescent NSCs (qNSCs) are arrested in either G2 or G0 G2-G0 heterogeneity directs NSC behavior: G2 qNSCs reactivate before G0 qNSCs. In addition, we show that the evolutionarily conserved pseudokinase Tribbles (Trbl) induces G2 NSCs to enter quiescence by promoting degradation of Cdc25String and that it subsequently maintains quiescence by inhibiting Akt activation. Insulin signaling overrides repression of Akt and silences trbl transcription, allowing NSCs to exit quiescence. Our results have implications for identifying and manipulating quiescent stem cells for regenerative purposes.
Project description:Cell cycle quiescence is critical for hematopoietic stem cell (HSC) maintenance. TGF-? signaling in bone marrow niche has been identified in regulating HSC quiescence; however, the intrinsic regulatory mechanisms remain unclear. This study reports that Shp-1 knockout HSCs have attenuated quiescence and impaired long-term self-renewal. SHP-1-activated HSCs are surrounded by megakaryocytes, which regulate HSC quiescence by producing TGF-?1. Mechanistically, SHP-1 interacts with the immunoreceptor tyrosine-based inhibition motif on TGF-? receptor 1 and is critical for TGF-? signaling activation in HSCs. Functionally, Shp-1 knockout HSCs do not respond to TGF-?-enforced HSC quiescence regulation, both in vitro and in vivo. Therefore, we identify TGF-?-SHP-1 as a novel intrinsic regulatory mechanism for HSC quiescence maintenance.
Project description:Metabolic reprogramming is pivotal to sustain cancer growth and progression. As such dietary restriction therapy represents a promising approach to starve and treat cancers. Nonetheless, tumors are dynamic and heterogeneous populations of cells with metabolic activities modulated by spatial and temporal contexts. Autophagy is a major pathway controlling cell metabolism. It can downregulate cell metabolism, leading to cancer cell quiescence, survival, and chemoresistance. To understand treatment dynamics and provide rationales for better future therapeutic strategies, we investigated whether and how autophagy is involved in the chemo-cytotoxicity and -resistance using two commonly used human glioblastoma (GBM) cell lines U87 and U251 together with primary cancer cells from the GBM patients. Our results suggest that autophagy mediates chemoresistance through reprogramming cancer cell metabolism and promoting quiescence and survival. Further unbiased transcriptome profiling identified a number of clinically relevant pathways and genes, strongly correlated with TCGA data. Our analyses have not only reported many well-known tumor players, but also uncovered a number of genes that were not previously implicated in cancers and/or GBM. The known functions of these genes are highly suggestive. It would be of high interest to investigate their potential involvement in GBM tumorigenesis, progression, and/or drug resistance. Taken together, our results suggest that autophagy inhibition could be a viable approach to aid GBM chemotherapy and combat drug resistance.
Project description:Mechanisms coordinating neural progenitor cell cycle exit and differentiation are incompletely understood. The cyclin-dependent kinase inhibitor p27(Kip1) is transcriptionally induced, switching specific neural progenitors from proliferation to differentiation. However, neuronal differentiation-specific transcription factors mediating p27(Kip1) transcription have not been identified. We demonstrate the homeodomain transcription factor Phox2a, required for central nervous system (CNS)- and neural crest (NC)-derived noradrenergic neuron differentiation, coordinates cell cycle exit and differentiation by inducing p27(Kip1) transcription. Phox2a transcription and activation in the CNS-derived CAD cell line and primary NC cells is mediated by combined cyclic AMP (cAMP) and bone morphogenetic protein 2 (BMP2) signaling. In the CAD cellular model, cAMP and BMP2 signaling initially induces proliferation of the undifferentiated precursors, followed by p27(Kip1) transcription, G(1) arrest, and neuronal differentiation. Small interfering RNA silencing of either Phox2a or p27(Kip1) suppresses p27(Kip1) transcription and neuronal differentiation, suggesting a causal link between p27(Kip1) expression and differentiation. Conversely, ectopic Phox2a expression via the Tet-off expression system promotes accelerated CAD cell neuronal differentiation and p27(Kip1) transcription only in the presence of cAMP signaling. Importantly, endogenous or ectopically expressed Phox2a activated by cAMP signaling binds homeodomain cis-acting elements of the p27(Kip1) promoter in vivo and mediates p27(Kip1)-luciferase expression in CAD and NC cells. We conclude that developmental cues of cAMP signaling causally link Phox2a activation with p27(Kip1) transcription, thereby coordinating neural progenitor cell cycle exit and differentiation.
Project description:The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogenous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent upon their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes the NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.
Project description:Stem cells enter and exit quiescence as part of normal developmental programs and to maintain tissue homeostasis in adulthood. Although it is clear that stem cell intrinsic and extrinsic cues, local and systemic, regulate quiescence, it remains unclear whether intrinsic and extrinsic cues coordinate to control quiescence and how cue coordination is achieved. Here, we report that Notch signaling coordinates neuroblast intrinsic temporal programs with extrinsic nutrient cues to regulate quiescence in Drosophila. When Notch activity is reduced, quiescence is delayed or altogether bypassed, with some neuroblasts dividing continuously during the embryonic-to-larval transition. During embryogenesis before quiescence, neuroblasts express Notch and the Notch ligand Delta. After division, Delta is partitioned to adjacent GMC daughters where it transactivates Notch in neuroblasts. Over time, in response to intrinsic temporal cues and increasing numbers of Delta-expressing daughters, neuroblast Notch activity increases, leading to cell cycle exit and consequently, attenuation of Notch pathway activity. Quiescent neuroblasts have low to no active Notch, which is required for exit from quiescence in response to nutrient cues. Thus, Notch signaling coordinates proliferation versus quiescence decisions.
Project description:The transition of mammalian cells from quiescence to proliferation is accompanied by the differential expression of several microRNAs (miRNAs) and transcription factors. However, the interplay between transcription factors and miRNAs in modulating gene regulatory networks involved in human cell proliferation is largely unknown. Here we show that the miRNA miR-22 promotes proliferation in primary human cells, and through a combination of Argonaute-2 immunoprecipitation and reporter assays, we identified multiple novel targets of miR-22, including several cell-cycle arrest genes that mediate the effects of the tumor-suppressor p53. In addition, we found that miR-22 suppresses interferon gene expression by directly targeting high mobility group box-1 and interferon regulatory factor (IRF)-5, preventing activation of IRF3 and NF-κB, which are activators of interferon genes. The expression of interferon genes is elevated in quiescent cells and their expression is inhibitory for cell proliferation. In addition, we find that miR-22 is activated by the transcription factor Myc when quiescent cells enter proliferation and that miR-22 inhibits the Myc transcriptional repressor MXD4, mediating a feed-forward loop to elevate Myc expression levels. Our results implicate miR-22 in downregulating the anti-proliferative p53 and interferon pathways and reveal a new transcription factor-miRNA network that regulates the transition of primary human cells from quiescence to proliferation.
Project description:Initial cell surface expression of the pre-B cell receptor induces proliferation. After 2 to 5 divisions, however, large pre-BII (Fraction C') cells exit cell cycle to become resting, small pre-BII cells (Fraction D). The mechanism by which pre-BII cells exit cell cycle, however, is currently unclear. The checkpoint at the Fraction C'-D transition is critical for immunoglobulin light chain gene recombination and to prevent malignant transformation into acute lymphoblastic leukemia. Here we demonstrate that inducible activation of pre-B cell receptor signaling induces cell-cycle exit through up-regulation of the transcriptional repressor BCL6. Inducible activation of BCL6 downstream of the pre-B cell receptor results in transcriptional repression of MYC and CCND2. Hence, pre-B cell receptor-mediated activation of BCL6 limits pre-B cell proliferation and induces cellular quiescence at the small pre-BII (Fraction D) stage.
Project description:The neonatal mammalian heart is capable of regeneration for a brief window of time after birth. However, this regenerative capacity is lost within the first week of life, which coincides with a postnatal shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation, particularly towards fatty-acid utilization. Despite the energy advantage of fatty-acid beta-oxidation, cardiac mitochondria produce elevated rates of reactive oxygen species when utilizing fatty acids, which is thought to play a role in cardiomyocyte cell-cycle arrest through induction of DNA damage and activation of DNA-damage response (DDR) pathway. Here we show that inhibiting fatty-acid utilization promotes cardiomyocyte proliferation in the postnatatal heart. First, neonatal mice fed fatty-acid deficient milk showed prolongation of the postnatal cardiomyocyte proliferative window, however cell cycle arrest eventually ensued. Next, we generated a tamoxifen-inducible cardiomyocyte-specific, pyruvate dehydrogenase kinase 4 (PDK4) knockout mouse model to selectively enhance oxidation of glycolytically derived pyruvate in cardiomyocytes. Conditional PDK4 deletion resulted in an increase in pyruvate dehydrogenase activity and consequently an increase in glucose relative to fatty-acid oxidation. Loss of PDK4 also resulted in decreased cardiomyocyte size, decreased DNA damage and expression of DDR markers and an increase in cardiomyocyte proliferation. Following myocardial infarction, inducible deletion of PDK4 improved left ventricular function and decreased remodelling. Collectively, inhibition of fatty-acid utilization in cardiomyocytes promotes proliferation, and may be a viable target for cardiac regenerative therapies.
Project description:Adult neural stem cells (NSCs) reside in a specialized microenvironment, the subventricular zone (SVZ), which provides them with unique signaling cues to control their basic properties and prevent their exhaustion. While the signaling mechanisms that regulate NSC lineage progression are well characterized, the molecular mechanisms that trigger the activation of quiescent NSCs during homeostasis and tissue repair are still unclear. Here, we uncovered that the NSC quiescent state is maintained by Rho-GTPase Cdc42, a downstream target of non-canonical Wnt signaling. Mechanistically, activation of Cdc42 induces expression of molecules involved in stem cell identity and anchorage to the niche. Strikingly, during a demyelination injury, downregulation of non-canonical Wnt-dependent Cdc42 activity is necessary to promote activation and lineage progression of quiescent NSCs, thereby initiating the process of tissue repair.