Project description:The development of vaccines against SARS-CoV-2 would be greatly facilitated by the identification of immunological correlates of protection in humans. However, to date, studies on protective immunity have only been performed in animal models and correlates of protection have not been established in humans. Here, we describe an outbreak of SARS-CoV-2 on a fishing vessel associated with a high attack rate. Predeparture serological and viral RT-PCR testing along with repeat testing after return to shore was available for 120 of the 122 persons on board over a median follow-up of 32.5 days (range 18.8 to 50.5 days). A total of 104 individuals had an RT-PCR positive viral test with Ct <35 or seroconverted during the follow-up period, yielding an attack rate on board of 85.2% (104/122 individuals). Metagenomic sequencing of 39 viral genomes suggested the outbreak originated largely from a single viral clade. Only three crewmembers tested seropositive prior to the boat's departure in initial serological screening and also had neutralizing and spike-reactive antibodies in follow-up assays. None of these crewmembers with neutralizing antibody titers showed evidence of bona fide viral infection or experienced any symptoms during the viral outbreak. Therefore, the presence of neutralizing antibodies from prior infection was significantly associated with protection against re-infection (Fisher's exact test, p=0.002).
Project description:The development of vaccines against SARS-CoV-2 would be greatly facilitated by the identification of immunological correlates of protection in humans. However, to date, studies on protective immunity have been performed only in animal models and correlates of protection have not been established in humans. Here, we describe an outbreak of SARS-CoV-2 on a fishing vessel associated with a high attack rate. Predeparture serological and viral reverse transcription-PCR (RT-PCR) testing along with repeat testing after return to shore was available for 120 of the 122 persons on board over a median follow-up of 32.5 days (range, 18.8 to 50.5 days). A total of 104 individuals had an RT-PCR-positive viral test with a cycle threshold (CT ) of <35 or seroconverted during the follow-up period, yielding an attack rate on board of 85.2% (104/122 individuals). Metagenomic sequencing of 39 viral genomes suggested that the outbreak originated largely from a single viral clade. Only three crew members tested seropositive prior to the boat's departure in initial serological screening and also had neutralizing and spike-reactive antibodies in follow-up assays. None of the crew members with neutralizing antibody titers showed evidence of bona fide viral infection or experienced any symptoms during the viral outbreak. Therefore, the presence of neutralizing antibodies from prior infection was significantly associated with protection against reinfection (Fisher's exact test, P = 0.002).
Project description:We introduce a compartmental model with age structure to study the dynamics of the SARS-COV-2 pandemic. The contagion matrix in the model is given by the product of a probability per contact with a contact matrix explicitly taking into account the contact structure among different age groups. The probability of contagion per contact is considered as time dependent to represent non-pharmaceutical interventions, and is fitted from the time series of deaths. The approach is used to study the evolution of the COVID-19 pandemic in the main Brazilian cities and compared to two good quality serological surveys. We also discuss with some detail the case of the city of Manaus which raised special attention due to a previous report of three-quarters attack rate by the end of 2020. We discuss estimates for Manaus and all Brazilian cities with a total population of more than one million. We also estimate the attack rate with respect to the total population, in each Brazilian state by January, 1 st 2021 and May, 23 2021.
Project description:BackgroundHousehold transmission studies offer the opportunity to assess both secondary attack rate (SAR) and persistence of SARS-CoV-2 antibodies over time.MethodsIn Spring 2020, we invited confirmed COVID-19 cases and their household members to four visits, where we collected nasopharyngeal and serum samples over 28 days after index case onset. We calculated SAR based on the presence of SARS-CoV-2 neutralizing antibodies (NAb) and assessed the persistence of NAb and IgG antibodies (Ab) against SARS-CoV-2 spike glycoprotein and nucleoprotein.ResultsSAR was 45% (39/87), including 35 symptomatic secondary cases. During the initial 28-day follow-up, 62% (80/129) of participants developed NAb. Of those that seroconverted, 90% (63/70), 85% (63/74), and 78% (45/58) still had NAb to early B-lineage SARS-CoV-2 3, 6, and 12 months after the onset of the index case. Anti-spike IgG Ab persisted in 100% (69/69), 97% (72/74), and 93% (55/59) of seroconverted participants after 3, 6, and 12 months, while anti-nucleoprotein IgG Ab levels waned faster, persisting in 99% (68/69), 78% (58/74), and 55% (39/71) of participants, respectively.ConclusionFollowing detection of a COVID-19 case in a household, other members had a high risk of becoming infected. NAb to early B-lineage SARS-CoV-2 persisted for at least a year in most cases.
Project description:We investigated an outbreak of SARS-CoV-2 variant BA.2.86 in an East of England care home. We identified 45 infections (33 residents, 12 staff), among 38 residents and 66 staff. Twenty-nine of 43 PCR swabs were sequenced, all of which were variant BA.2.86. The attack rate among residents was 87%, 19 were symptomatic, and one was hospitalised. Twenty-four days after the outbreak started, no cases were still unwell. Among the 33 resident cases, 29 had been vaccinated 4 months earlier.
Project description:Coronavirus disease 2019 (COVID-19) vaccines are highly efficacious at preventing symptomatic infection, severe disease, and death. Most of the evidence that COVID-19 vaccines also reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is based on retrospective, observational studies. Specifically, an increasing number of studies are evaluating vaccine effectiveness against the secondary attack rate of SARS-CoV-2 using data available in existing health-care databases or contact-tracing databases. Since these types of databases were designed for clinical diagnosis or management of COVID-19, they are limited in their ability to provide accurate information on infection, infection timing, and transmission events. We highlight challenges with using existing databases to identify transmission units and confirm potential SARS-CoV-2 transmission events. We discuss the impact of common diagnostic testing strategies, including event-prompted and infrequent testing, and illustrate their potential biases in estimating vaccine effectiveness against the secondary attack rate of SARS-CoV-2. We articulate the need for prospective observational studies of vaccine effectiveness against the SARS-CoV-2 secondary attack rate, and we provide design and reporting considerations for studies using retrospective databases.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spread by direct, indirect, or close contact with infected people via infected respiratory droplets or saliva. Crowded indoor environments with sustained close contact and conversations are a particularly high-risk setting. We performed a meta-analysis through July 29, 2020 of SARS-CoV-2 household secondary attack rate (SAR), disaggregating by several covariates (contact type, symptom status, adult/child contacts, contact sex, relationship to index case, index case sex, number of contacts in household, coronavirus). We identified 40 relevant published studies that report household secondary transmission. The estimated overall household SAR was 18.8% (95% confidence interval [CI]: 15.4%-22.2%), which is higher than previously observed SARs for SARS-CoV and MERS-CoV. We observed that household SARs were significantly higher from symptomatic index cases than asymptomatic index cases, to adult contacts than children contacts, to spouses than other family contacts, and in households with one contact than households with three or more contacts. To prevent the spread of SARS-CoV-2, people are being asked to stay at home worldwide. With suspected or confirmed infections referred to isolate at home, household transmission will continue to be a significant source of transmission.
Project description:Estimating an infectious disease attack rate requires inference on the number of reported symptomatic cases of a disease, the number of unreported symptomatic cases, and the number of asymptomatic infections. Population-level immunity can then be estimated as the attack rate plus the number of vaccine recipients who had not been previously infected; this requires an estimate of the fraction of vaccines that were distributed to seropositive individuals. To estimate attack rates and population immunity in southern New England, we fit a validated dynamic epidemiological model to case, clinical, and death data streams reported by Rhode Island, Massachusetts, and Connecticut for the first 15 months of the COVID-19 pandemic, from March 1 2020 to May 31 2021. This period includes the initial spring 2020 wave, the major winter wave of 2020-2021, and the lagging wave of lineage B.1.1.7(Alpha) infections during March-April 2021. In autumn 2020, SARS-CoV-2 population immunity (equal to the attack rate at that point) in southern New England was still below 15%, setting the stage for a large winter wave. After the roll-out of vaccines in early 2021, population immunity in many states was expected to approach 70% by spring 2021, with more than half of this immune population coming from vaccinations. Our population immunity estimates for May 31 2021 are 73.4% (95% CrI: 72.9% - 74.1%) for Rhode Island, 64.1% (95% CrI: 64.0% - 64.4%) for Connecticut, and 66.3% (95% CrI: 65.9% - 66.9%) for Massachusetts, indicating that >33% of southern Englanders were still susceptible to infection when the Delta variant began spreading in July 2021. Despite high vaccine coverage in these states, population immunity in summer 2021 was lower than planned due to 34% (Rhode Island), 25% (Connecticut), and 28% (Massachusetts) of vaccine distribution going to seropositive individuals. Future emergency-setting vaccination planning will likely have to consider over-vaccination as a strategy to ensure that high levels of population immunity are reached during the course of an ongoing epidemic.